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FOREWORD
Artificial intelligence, or AI, has become a ubiquitous part of our lives. Hardly a day 
goes by without hearing or reading about AI and the impacts it is having on society. 

Up until now, industry has led the charge in developing and implementing AI 
technologies to help achieve commercial goals. However, the public sector is 
increasingly turning to AI technologies to carry out its functions, develop and inform 
policy, and deliver services to its citizens.

How governments and regulators respond to technological and social developments 
in AI will have a large and lasting impact on our society. We need to encourage 
worthwhile technological innovation, but we need to do so with our eyes open.  
This requires us to be alert to the far-reaching effects AI can have. We all have a role to 
play in determining what the society in which we want to live looks like. 

This is why we have developed this book. Its primary purpose is to increase the 
Victorian public sector’s understanding of AI technologies that have the potential 
to impact our lives, and to assist those who implement AI systems to appreciate the 
technical, social, and legal aspects. But we also hope the book will be of interest 
to any member of the community who wishes to explore the ramifications of such a 
transformative technology and to participate in the debate around its adoption.

We must not be complacent about the potential effects of AI in public administration. 
As the Victorian public sector’s uptake of AI technologies increases, we must design 
our systems in a way that is cognisant of the considerations discussed in this book. 

In developing this publication, we drew on the extensive expertise of eight AI experts 
who authored the chapters of this book. I would like to express my thanks to each of 
them for their contributions, and for making these topics accessible, engaging and 
thought-provoking.

 

Sven Bluemmel
Information Commissioner 
August 2019
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INTRODUCTION
There’s an oft-quoted line from the Spielberg movie Jurassic Park in which Dr Ian 
Malcolm, the fictional character portrayed by actor Jeff Goldblum, says “Your  
scientists were so preoccupied with whether or not they could, they didn’t stop  
to think if they should”. 

While the quote has been widely used in discussions of Artificial Intelligence (AI), 
it’s less true of AI than it is of hypothetical re-imagined dinosaurs. AI offers potential 
benefits, as several of the chapters in this book illustrate. And it offers many benefits in 
the here and now, for example by way of the automatic braking systems we now take 
for granted in our cars, and the voice recognition used by tens of millions of people 
to conduct daily tasks. AI is here already. We can’t stop to think about whether or not 
we should build it, but we might want to ask exactly what it is we’re building, and think 
about how best to incorporate it into our lives.

If we’re to avoid the unintended consequences of poorly planned or executed AI, we 
need to consider modifying the fictional Dr Malcolm’s proposition:

“We should be concerned with whether or not we are solving the right problems, 
for the right people.”

This book contains seven chapters, exploring the technical, social and legal aspects of 
artificial intelligence. While each chapter looks at different aspects to be considered in 
developing and implementing AI, there are some common themes. One is that despite 
enormous progress in AI, we are only just beginning to see the potential benefits 
and problems it may bring. Another is that the decision-making and risk analysis 
frameworks for implementing AI into our modern lives may need some adjustment, but 
not at the expense of human rights and privacy.

UNDERSTANDING AI – provides a brief overview of the history of AI, from Aristotle, to 
Alan Turing, to what AI looks like today. It covers what AI is and is not, what it can and 
cannot do, and what it will and will not be able to do in the future.

A MATTER OF PERSPECTIVE: DISCRIMINATION, BIAS AND INEQUALITY IN AI – 
looks at discrimination, bias and inequality in AI, how these concepts are understood 
differently by law and technology, and how they might be addressed. The chapter also 
explores human rights and how they are impacted by AI.
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ALGORITHMIC TRANSPARENCY AND DECISION-MAKING ACCOUNTABILITY: 
THOUGHTS FOR BUYING MACHINE LEARNING ALGORITHMS – focuses on how AI 
is increasingly used to make decisions, the ramifications that has on transparency and 
accountability, and how we could tackle those issues.

AI IN THE PUBLIC INTEREST – covers many of the ways in which AI can, and is, being 
used in the public interest, from making strategic decisions to maintaining the Sydney 
Harbour Bridge. It discusses how AI can both compromise and protect privacy, and 
highlights some of the barriers that AI will encounter in the future.

ALGORITHMS, NEURAL NETWORKS AND OTHER MACHINE LEARNING 
TECHNIQUES – dives into how AI actually works; how computers can perform tasks 
without being told how. It covers the different ways that computers have been ‘taught’ 
over the years, ramping up to the neural networks that power the modern world, and 
the problems that have come with them.

DATA SECURITY AND AI – takes a closer look at the security and privacy challenges 
that come with using AI outside of ‘the lab’, and the arms race of developing ways to 
use AI to protect and exploit personal information.

REGULATING AI – explores how AI is already being regulated, and how we could 
update old laws or create new ones to respond to AI. 
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KEY TERMS 
Artificial intelligence, by its nature is a technical subject. The authors have strived 
to explain many of the terms and concepts in this book in a non-technical manner, 
however it is useful for you to have an overview of the key terms and concepts before 
you begin reading.  

Artificial intelligence (AI)
The ability for a computer to do something that requires intelligence, such as learning 
or problem solving.

Machine learning (ML)
A subset of AI, machine learning is the ability for a computer to perform tasks without 
being given explicit instructions how, instead ‘learning’ how to preform those tasks by 
finding patterns and making inferences.

Black box
An AI system where the data inputted is known, and the decisions made from that 
data are known, but the way in which the data was used to make the decisions is not 
understood by humans.

Explainable AI (XAI) or white box or glass box
An AI system where the way in which the system makes decisions is understood by 
humans.

Model
The ‘intelligent’ part of a machine learning system that learns how to perform tasks by 
making predictions or decisions.

Training
The process used to create a model.

Training data
The set of data used in the training process.

Instance or observation or sample or entity or case or record or pattern or row
A single item in a larger set of data, for example, a single person in a spreadsheet of 
employees.
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Feature or attribute
A property of a set of data. For example, the features of a spreadsheet of employees 
might be names, positions, salaries, phone numbers and addresses.

Classifier
A machine learning model that can classify information. For example, a classifier may 
sort pictures of bananas into groups of ‘unripe’, ‘ripe’ or ‘overripe’.

Supervised learning
The process of training a model using training data that is labelled. For example, 
training a classifier to tell the difference between apples and oranges using training 
data made up of pictures labelled ‘an apple’ or ‘an orange’.

Unsupervised learning
The process of training a model using training data that is unlabelled. For example, 
training an AI system to tell the difference between different kinds of vegetables using 
training data made up of unsorted and unlabelled pictures of vegetables.

Semi-supervised learning
The process of training a model where the training data is made up of both labelled 
and unlabelled data. Semi-supervised learning is often done by manually labelling a 
relatively small part of a large unlabelled data set.

Reinforcement learning
The process of training a model by using trial and error, where the system receives 
rewards for performing well and punishments for performing poorly.

Online machine learning
The process of performing machine learning where the learning is ongoing using real-
time data, as opposed to being trained once with a fixed set of data.

Transfer learning 
The ability to use an existing model for a new purpose, such as getting a chess playing 
AI to play checkers.

Neural network (NN) or artificial neural network (ANN)
A common way to perform machine learning, neural networks are made up of sets of 
algorithms (called ‘neurons’), each of which helps perform a very small part of a larger 
task. Neurons have connections (sometimes called ‘edges’) to other neurons with 
varying strengths (called ‘weights’).
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Deep neural network (DNN)
A neural network that has its neurons organised into multiple ‘layers’, where the results 
of the first layer feed into the second layer and so on.

Deep learning (DL)
The process of performing machine learning using deep neural networks.

Backpropagation
A common way for neural networks to learn, especially when using supervised 
learning. After a neural network experiments with a new approach to performing a task, 
backpropagation is how the network evaluates how successful that approach was, and 
then adjusts the weights of connections throughout the network accordingly.

Convolutional neural network (CNN or ConvNet)
A kind of deep neural network that looks at the spatial relationships of information, 
such as where pixels are located in a picture. Convolutional neural networks are 
commonly used for AI systems involving images, such as identifying objects that are in 
photographs.

Recurrent neural network (RNN)
A kind of deep neural network that looks at the sequence of information, such as the 
order of words in a sentence. Recurrent neural networks are commonly used for AI 
systems involving language, such as transcribing spoken words to text.

Generative adversarial network (GAN)
A kind of machine learning that pits two different neural networks against each other. 
For example, the first neural network (called a ‘generative network’) might try to create 
‘fake’ pictures of human faces, while the second neural network (called a ‘discriminative 
network’) tries to guess if the faces are real or not. Backpropagation is done for both 
neural networks; the first network can learn how to make more convincing faces, and 
the second network can learn how to better spot artificial faces.

Autoencoder
A type of neural network that can learn using unsupervised learning. Autoencoders 
take an instance, break it down (‘encode’) into a representation of the features of 
the instance, then reconstruct (‘decode’) the instance using the representation. 
Autoencoders learn using backpropagation; they measure how ‘successful’ an attempt 
was by comparing the original instance to the reconstructed instance. 
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UNDERSTANDING AI

Toby Walsh

We all know what artificial intelligence (AI) is. Hollywood has given us plenty of 
examples. Artificial intelligence is the destructive T-800 robot played by Arnold 
Schwarzenegger in the Terminator movies. It is HAL 9000, the sentient and murdering 
talking computer in 2001: A Space Odyssey. It is Ava, the female humanoid robot in Ex 
Machina that deceives humans to escape into the wild. And it is the Tyrell Corporation 
Nexus-6 replicant in Blade Runner, running away from would-be replicant Harrison 
Ford to save itself from being ‘retired’. 

In reality, artificial intelligence is none of these conscious robots. We cannot yet build 
machines that match the intelligence of a three year old. We can, however, program 
computers to do narrow focused tasks that require intelligence for humans to solve.

What is AI?
If artificial intelligence is not the stuff of Hollywood movies, what is it? Oddly enough,  
AI is already very much part of our lives. However, much of it is hidden from sight.  
For example, every time you ask Siri or Google Home a question, you are using a 
number of different types of artificial intelligence: the speech recognition software 
that converts your speech into a natural language question, the natural language 
processing algorithms that convert this question into a search query, the search 
algorithms that answer this query, and the ranking algorithms that predict the most 
‘useful’ search results. 

As a second example, if you’re lucky enough to own a Tesla, you can sit in the driving 
seat whilst the car drives itself autonomously along the highway using a whole host of 
AI algorithms that sense the road and environment, plan a course of action, and drive 
the car to where you want to go. Artificial intelligence is also the machine learning 
algorithms predicting which criminals will reoffend, who will default on their loans, and 
shortlisting your CV for your next job.

For those of us working in the field, the fact that AI often falls out of sight in this way 
is gratifying evidence of its success. Ultimately, AI will be a pervasive and invaluable 
technology, like electricity, that invisibly permeates our lives. Almost every device in 
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our lives today uses electricity. It is an essential and largely unseen component of our 
homes, our cars, our farms, our factories, and our shops. It brings energy and data 
to almost everything we do. If electricity disappeared, the world would quickly grind 
to a halt. In a similar way, AI will shortly become an essential and mostly invisible 
component to our lives. It is already providing the smartness in our smart phones, 
but soon it will be powering the intelligence in our self-flying cars, smart cities, and 
intelligent factories.

Unlike many scientific endeavours, artificial intelligence has an official birth year. 
It started in 1956 when one of the founding fathers, John McCarthy proposed the 
name. He used the term to describe the topic of a famous meeting, the Dartmouth 
Conference held over the summer of 1956 that kicked off the field. There’s arguably 
much wrong with the name that John McCarthy chose. ‘Intelligence’ is itself a poorly 
defined concept. And putting the adjective ‘artificial’ in front of anything opens you up 
to countless jokes about ‘natural intelligence’ and ‘artificial stupidity’. But for better or 
worse, the name artificial intelligence has stuck.

The history of artificial intelligence goes much further back than 1956 when the name 
was coined. Indeed, it goes back before even the invention of the computer. Humans 
have been thinking about machines that might think, and how we might model thinking, 
for thousands of years. Like many stories, there is no clear beginning to humanity’s 
quest to build machines that think. The story is, however, intimately connected to the 
story around the invention of logic. 

One possible beginning is the 3rd century BC, when Aristotle founded the field of 
formal logic. Without logic, we would not have the modern digital computer. The 
computer is a practical implementation of logic. And logic has often and continues to 
be seen as a model for thinking. It is a means to make precise how we reason and 
form arguments. Moving forwards in time, the history of AI takes in many other great 
thinkers besides Aristotle, such as Ramon Llull, Gottfried Leibnitz, Charles Babbage, 
Ada Lovelace and George Boole, all of whom dreamed of mechanising thought.

One figure that stands out in the complex and surprisingly long history of artificial 
intelligence is the mathematician and code breaker, Alan Turing. Despite a tragic and 
early death in 1954, Turing played a pivotal role in the invention of the digital computer. 
He also wrote what is often considered the first scientific paper about artificial 
intelligence. In 1950, before the field had even been named, Turing wrote a paper titled 
‘Computing Machinery and Intelligence’ for the journal MIND.1 The paper asked the 
question of how we would know when AI had succeeded. When could we say that a 
machine thinks?
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Turing’s answer to this question is now known as the Turing Test. It is also called the 
Imitation Game, as it asks if a computer can imitate a human being. Turing suggested 
that if you interrogate a human and a computer remotely and cannot tell them apart 
then perhaps you might as well consider that the computer ‘thinks’ like a human. 
This functional test is reflected today in an equally functional definition of artificial 
intelligence: AI is getting computers to do tasks that, when humans do them, we 
think they require thinking. Driving a car. Translating English into German. Proving a 
mathematical theorem. Playing the ancient Chinese game of Go. Reading an x-ray. 
Diagnosing skin cancer. Composing a song. Painting some abstract art. Or coming up 
with a joke. These are all tasks we think require thinking. And it may surprise you to 
hear that computers can already do all of these tasks.

AI is many things
A common misconception is that AI is a single thing. Just like our intelligence is a 
collection of different skills, AI today is a collection of different technologies, such as 
machine learning, natural language processing, and speech recognition. As many of the 
recent advances in AI have been in the area of machine learning, artificial intelligence 
is often mistakenly conflated with machine learning. However, just as humans do more 
than learn how to solve tasks, artificial intelligence is more than just machine learning. 
In my 2017 book, It’s Alive!: Artificial Intelligence from the Logic Piano to Killer Robots,2 I 
introduce the four tribes of AI who are working on different aspects of building thinking 
machines: the learners, the reasoners, the roboticists and the linguists. Of course, the 
intellectual landscape of AI is much more complex than this quartet of tribes, but this 
decomposition is a good place to start in understanding what AI is.

The first tribe working on artificial intelligence is the tribe of the learners. The learners 
are interested in getting computers to learn to do intelligent tasks. Much of our human 
intelligence is learnt. We are born without language; without knowledge of what is 
good to eat; without an ability to walk, talk, or add up numbers; without knowledge of 
the sun and the moon; and without an understanding of Newton’s laws of physics. But 
we learn all these things and more. One way, therefore, to build a thinking machine is 
to build a computer that can learn, just like humans do.

Giving computers the ability to learn also solves the problem of having to codify all 
of the knowledge we have acquired as we grow up; knowledge that is essential to 
operating in the real world. It is a long and painful task to itemise to a robot all the 
common sense knowledge it might need, such as the sky is blue, shadows are not 
objects, objects do not disappear when they go out of sight, and so on. Within the 
learners, a very successful group of late are those working with neural networks, and 
in particular those working with deep learning – neural networks with many layers. 
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This group borrows ideas from neuroscience to build learning mechanisms loosely 
modelled on those used in our brains. They construct ‘neural networks’ with thousands 
of abstract neurons, and millions of connections that are trained on examples of the 
concepts to be learnt. If you show the network thousands of images of cats and dogs, 
and adjust the weights in these connections, the network can be trained to distinguish 
between the two.

The second tribe working on building artificial intelligence is the tribe of the reasoners. 
This group explores how to equip machines with explicit rules of thought. Machines 
can reason over knowledge that either is explicitly encoded up front, or is learnt 
from interacting with the real world. Hence, the reasoners may depend on the tribe 
of the learners to prepare their way. Human reasoning is far more complex than the 
simple 0 and 1 logic of computers. We need to cope with incomplete knowledge, with 
inconsistent knowledge, with uncertainty, even with knowledge about knowledge. 
The reasoners therefore try to develop formal models of reasoning that can cope with 
partial information, with contradictory information, with probabilistic information, and 
with information about information itself (so called meta-information).

The third tribe working in artificial intelligence is the tribe of the roboticists. Human 
intelligence is a complex phenomenon. It arises in part from our interactions with 
the real world. The roboticists build machines that act in the real world, that can 
reason about their actions, and that can learn like we do from these interactions. The 
roboticists therefore also overlap with the tribes of the learners and the reasoners. Of 
course, robots need to sense the world in which they act, so a part of this tribe works 
on computer vision – giving computers the ability to perceive the state of the world. 
Vision not only helps us navigate in the real world but is an important part of our ability 
to learn about that world. Much of what we have learnt came from what we have seen.

The fourth tribe working on building a thinking machine is the tribe of the linguists. 
Language is an important part of human thought. For machines to think, they must 
therefore understand and manipulate natural language. The tribe of the linguists 
develop computer programs that can parse written text, that can understand and 
answer questions, and that can translate between two languages. We also use 
language in speech. Therefore, a part of this tribe also works on speech recognition – 
getting computers to understand audio input.

What AI can and can’t do today
Artificial intelligence is almost certainly at the peak of inflated expectations in its hype 
cycle and will likely descend shortly into a trough of disillusionment as reality fails to 
match expectations. If you added up everything written in the newspapers about the 
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progress being made, or believed the more optimistic surveys, you might suspect that 
computers would shortly match humans in their intelligence. The reality is that whilst 
we have made good progress in getting machines to solve narrow problems, we have 
made almost no progress on building more general intelligence that can tackle a wide 
range of problems. AI systems are surprisingly brittle. If you change the problem, even 
slightly, even the smartest AI systems tend to break catastrophically.

A lot of the hype about artificial intelligence today is due to the remarkable progress 
being made in the area of deep learning, especially for perceptive tasks like seeing 
or hearing the world. For example, Baidu’s Deep-Speech 2 system is now competitive 
with humans at transcribing speech into text. It would be, however, wrong to conclude 
that machine learning will solve AI, and that with a few more refinements, it will get us 
to human level intelligence.

One limitation of deep learning, and indeed of almost all machine learning techniques, 
is the amount of data that is needed. Often hundreds of thousands, or even millions, 
of training examples are needed to train a system to reach human level performance. 
Whilst many enterprises are collecting large sets of data, there are nevertheless many 
domains where data is hard to collect or is simply not available. In robotics, the laws 
of physics may limit how quickly we can collect data. The robot cannot move faster 
than its motors allow. We may also have to be careful not to break the robot. There are 
other domains where we simply cannot have a lot of data. We might want to predict 
success rates for heart-lung transplants, but the number of such operations worldwide 
is numbered in the hundreds. We cannot have thousands, let alone millions of training 
examples. Humans are, by comparison, very fast learners. For instance, we can learn 
from a single example, and can generalise easily to new situations.

There are several other limitations of deep learning. First, it is largely a black box  
and is unable to explain itself in very helpful ways. Second, it cannot guarantee certain 
behaviours. For example, we can break many computer vision systems by changing  
a single pixel.3 Third, we often need to do more than make predictions. We might need 
to also make decisions based on these predictions. For example, given some predicted 
demands, these are the best products to manufacture in the next quarter. Or, given  
this predicted traffic, these are the best routes for our truck fleet to deliver to the  
shops tomorrow.

It would be impossible to discuss recent advances in artificial intelligence without 
mentioning the role that big data has played. Many enterprises are leveraging big data 
sets to build practical applications using machine learning. Banks are using big data and 
machine learning to detect credit card fraud. Online stores like Amazon are using big 
data and machine learning to tune their product recommendations. And scientists have 
identified promising new drugs using machine learning applied to large data sets.4 
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In general, machine learning helps us classify, cluster and make predictions about 
data. It is impossible to list all the applications, but I will mention a few to illustrate the 
breadth of the field. Machine learning is being successfully used to detect malware; 
to predict hospital admissions; to check legal contracts for errors; to prevent money 
laundering; to identify birds from their tweets; to predict gene function; to discover 
new materials; to mark essays; to identify the best crops to plant; and somewhat 
controversially, to predict crime and schedule police patrols. Indeed, it might be 
easier to list the areas where machine learning is not being used, except it is almost 
impossible to think of an area where machine learning isn’t being used currently.

There are several areas in which machine learning techniques are challenged. One 
such area mentioned earlier is explanation. Unlike humans, many machine learning 
algorithms are unable to explain how or why they came up with their answers. Another 
area is in learning from limited amounts of data, as well as from noisy data. Machine 
learning has a long way to go to match human performance in such settings. A third 
challenge is learning across problems, also known as ‘transfer learning’. Humans can 
apply their expertise in one domain to get up to speed quickly in another. Once you are 
good at playing squash, you will likely be reasonable at playing tennis. By comparison, 
machine learning algorithms have to start from scratch when dealing with new tasks. 

Another area in which machine learning remains challenged is in what is called 
‘unsupervised learning’. Many of the recent advances in machine learning have been 
in supervised learning, where we have training data that is correctly labelled. The 
data is labelled with the concept to be learnt. This email is ‘spam’. These emails are 
‘genuine’. This web traffic is ‘suspicious’. These web queries are ‘legitimate’. But in 
many application domains, we don’t have such labelled data. When we learnt to see 
the world as babies, the world didn’t helpfully come labelled ‘book’, ‘table’, ‘chair’, etc. 
We would like computers to learn from unlabelled data like we can.

Despite all these limitations, I am not concerned that the field will go through another 
‘AI Winter’, as it did in the 1990s following the expert systems boom of the 1980s. 
Even if we made no more technical progress on building AI, which I doubt, we 
can now solve a wide range of useful problems. Just rolling out AI to new areas in 
which it has yet to be applied would be of considerable practical value. A report by 
PricewaterhouseCoopers in 2017 estimated that AI will add over $15 trillion to the 
world’s gross domestic product (GDP) in inflation adjusted terms by 2030.5 In some 
countries, like China, it might help grow GDP by a quarter. In Australia, it was estimated 
to add over 10% to our GDP. This is perhaps half of all the economic growth we can 
expect in the next decade.
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What AI can and can’t do tomorrow
In the future, will we run into limits that prevent us from building even smarter artificial 
intelligence? 

There are many machines we would like to build that we will likely never engineer. 
For example, we’re unlikely ever to have time machines to take us back to the past, 
or perpetual motion machines that run without limit. Perhaps artificial intelligence will 
never match human level intelligence. Many other scientific fields have discovered 
fundamental limits, both practical and theoretical. Indeed, computing is already running 
into quantum limits in trying to shrink transistors further and squeeze more onto silicon 
chips. Perhaps there are also practical and theoretical limits that will defeat the goal of 
building machines that match or even exceed human level intelligence.

One argument against AI, discussed by Alan Turing himself, is the argument of 
disability. This is the argument that computers may act somewhat intelligently but they 
will never do some particular activity. They will never be wrong. Or never fall in love. Or 
never learn from experiences. Or never invent a joke. Or never appreciate the music of 
Beethoven. The list goes on. Unfortunately, people rarely back up such arguments with 
any evidence that machines cannot do these tasks. It is merely that they have not seen 
a machine do this task yet.

Some of these arguments are very easy to dismiss. There are many documented 
cases of computers doing something new. Making a new type of opening move in Go. 
Writing a poem. Composing music in the style of Bach. The list goes on. There are 
also many examples of computers learning from experiences. AlphaGo learnt to play 
Go by playing against itself. Google Translate learnt how to translate sentences from 
thousands of UN transcripts. Computer vision systems have learnt to recognise skin 
cancer better than human eyes.

One of the most popular and important arguments against AI is one of the oldest and 
is due to Ada Lovelace, often considered to be the first computer programmer. Ada 
Lovelace worked alongside Charles Babbage in the 19th century when he was trying 
(and failing) to build a mechanical computer. Ada Lovelace suggested that computers 
only do what we know how to do and in particular cannot be creative. There are many 
responses to this objection. One is that computers have been creative many times 
already, writing poems, composing music, inventing new mathematics and painting 
paintings. Another response to Ada Lovelace’s objection is humans are limited by 
the same deterministic laws as computers. Are we not merely biological machines? 
How then can we be creative if machines aren’t? A third response to Ada Lovelace’s 
objection is that AI systems often behave in ways that we do not expect. Perhaps 
creativity can be found within these unexpected moments.
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Another limit besides creativity is that machines may never be conscious. In 1951, 
Geoffrey Jefferson eloquently put this argument forwards as follows:

Not until a machine can write a sonnet or compose a concerto because of 
thoughts and emotions felt, and not by the chance fall of symbols, could we 
agree that machine equals brain – that is, not only write it but know that it had 
written it. No mechanism could feel (and not merely artificially signal, an easy 
contrivance) pleasure at its successes, grief when its valves fuse, be warmed 
by flattery, be made miserable by its mistakes, be charmed by sex, be angry or 
depressed when it cannot get what it wants.

Of course, consciousness is itself a difficult problem to explain in biological systems. 
Indeed, artificial intelligence may throw some light on human consciousness. It is not 
clear if computers will ever develop some sort of consciousness, or if it is a uniquely 
biological phenomenon. We might prefer that machines do not gain consciousness. 
For once machines are conscious, we may have ethical obligations towards how they 
are treated. Is it reasonable to turn them off? Do they suffer? In any case, since we 
understand so little today about consciousness, it is not at all clear that it is necessarily 
a limit on artificial intelligence.

We may also run into various tacit limits in trying to build more intelligent machines. A 
lot of the ‘intelligent’ activities we do are ones that we cannot explain to anyone else. 
Or even to ourselves. One example of tacit limits is facial recognition. You know your 
mother’s face, and you can recognise it out of a million, or indeed a billion others. Yet 
you are not conscious about your knowledge of her face. You would probably struggle 
to describe the precise arrangement of her eyes, nose, and mouth. Instead, you 
recognise her face as a whole unconsciously. There are many other examples. Riding 
a bicycle. Shooting a hoop. Even deciding on a good move in the game of Go. We can 
read about them in books. But you have to do them, to learn them.

Easy tasks for humans are often hard to get computers to do. And vice versa. This is 
known as Moravec’s Paradox, after a famous roboticist Hans Moravec who identified it 
in the 1980s. Other well-known AI researchers like Rodney Brooks and Marvin Minsky 
made similar observations around this time. Indeed, in 1994 the cognitive scientist 
Steven Pinker has claimed that this is one of the most important ideas discovered in AI 
research so far:

The main lesson of thirty-five years of AI research is that the hard problems are 
easy and the easy problems are hard. The mental abilities of a four-year-old that 
we take for granted – recognizing a face, lifting a pencil, walking across a room, 
answering a question – in fact solve some of the hardest engineering problems 
ever conceived. Do not be fooled by the assembly-line robots in the automobile 
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commercials; all they do is weld and spray-paint, tasks that do not require these 
clumsy Mr. Magoos to see or hold or place anything. And if you want to stump an 
artificial intelligence system, ask it questions like, Which is bigger, Chicago or a 
breadbox? Do zebras wear underwear? Is the floor likely to rise up and bite you? 
If Susan goes to the store, does her head go with her? Most fears of automation 
are misplaced. As the new generation of intelligent devices appears, it will be 
the stock analysts and petrochemical engineers and parole board members who 
are in danger of being replaced by machines. The gardeners, receptionists, and 
cooks are secure in their jobs for decades to come.

Moravec’s paradox means that many jobs will be difficult for AI to replace. Equally 
there will be many new jobs that AI creates. In addition, the jobs at risk are not perhaps 
those that you suspect. The construction worker is relatively safe thanks to Moravec’s 
paradox. But he or she has become a cyborg of sorts, with fork lifts, cranes, drills and 
power tools that amplify their productivity manyfold. There is perhaps no real paradox 
to Moravec’s paradox. Our brains encode billions of years of evolution. They have been 
fine-tuned over millions of years. It is the higher-level cognitive tasks like playing Go, 
reading X-rays, or rostering staff that are easier to get computers to do.

How long have we got?
In the view of many experts in AI, myself included, we still have a substantial way to 
go to build artificial intelligence that matches human intelligence. The AI we can build 
today solves narrow problems. Nothing matches the breadth and depth of abilities of 
humans. We can write a computer program to play Chess, but it would have no hope at 
a game of chance like Poker. And it certainly couldn’t translate Chinese into English. Or 
identify pneumonia in chest x-rays. Humans have a remarkable ability to adapt to new 
circumstances. It is likely we will need significant technical breakthroughs to build AI 
with such general purpose capabilities.

In 2012, Vincent Muller and Nick Bostrom of the University of Oxford surveyed a 
number of AI researchers about when high-level machine intelligence would be 
achieved. In particular, they asked when we might build a machine that could carry out 
most jobs at least as well as an average human. As there is significant uncertainty when 
this might happen, they asked for an estimate of when this was 50 percent likely. The 
median of these estimates was the year 2040.

I conducted a more recent survey in January 2017. I asked over three hundred of my 
colleagues, researchers working in artificial intelligence, to give their best estimate 
of the time it would take to tackle the obstacles between us and high-level machine 
intelligence. And to put their answers in perspective, I also asked nearly five hundred 
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non-experts for their opinion. I was expecting there might be some mismatch between 
the predictions of the experts and the non-experts. I was right. The median prediction 
of the experts was 2062. This compares to a prediction by the non-experts of 2039, 
over two decades earlier. The non-experts were a little more optimistic than Ray 
Kurzweil, futurist and director of engineering at Google, who predicts computers 
passing humans around 2045.

Why are experts so much less optimistic than non-experts? One of the perception 
problems faced by AI is that people see systems playing complex games like Chess and 
Go and, reasoning that these games require lots of intelligence, imbue these systems 
with all the other intellectual abilities that we humans have. In the case of human Chess 
and Go players, this is a reasonable assumption. A good Go player is likely to be an 
intelligent person. But this is not the case with computers. A good Go program isn’t 
necessarily able even to play Chess. And there is a very long distance to get from 
playing Go to doing many of the other tasks humans can do that require intelligence.

What you can take from these surveys is that we are still a considerable distance, 
scientifically, from building AI that matches human intelligence. It is not something 
that is likely to be achieved in the next decade. Equally, it is not something that many 
experts think will take a thousand years. It may take fifty to a hundred years, so it is 
entirely conceivable that it will happen in the lifetime of our children. And if we are 
lucky, it might even happen in our own lifetimes. It is therefore a reasonable moment 
to consider the impact that AI will have on our lives, and how best to prepare for its 
arrival. Equally, you don’t have to lose sleep over the machines surpassing us in the 
very near future.

How does AI work?
As I mentioned earlier, machine learning has fuelled many of the recent spectacular 
advances seen in artificial intelligence. It powered Google’s AlphaGo to beat the best 
Go players on the planet. It is also the secret sauce behind Google Translate. And 
machine learning is behind the success of many other AI programs that can beat 
humans at tasks, like diagnosing skin cancer or playing Poker.

One common reaction to the idea of machine learning is that computers only do what 
you program them to do. On a simple level, this is correct. Computers are entirely 
deterministic. They follow the instructions in their computer code. They do not deviate. 
They cannot deviate. But on a deeper level, computers can do things they weren’t 
explicitly programmed to do. They can learn new programs. They can even be creative. 
Just like us, they learn to do new things from their experiences. AlphaGo wasn’t 
programmed to play the ancient Chinese game of Go better than a world champion. 
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No one sat down and worked out how to program playing Go like an expert. AlphaGo 
learnt to play Go well by playing against itself millions of times.

The reason that it got better than humans was that it played more games of Go than a 
human could in a lifetime of playing Go. If you played Go for the whole of your life, from 
the moment you woke up every morning to the moment you fell asleep, you wouldn’t 
have played even a fraction of the number of games of Go that AlphaGo did in order 
to beat the world champion. And in learning to play Go well, it even became a little 
creative. It played moves that Go masters never expected, opening up new possibilities 
in how Go is played. 

The claim that computers cannot be creative is an often repeated but flawed argument 
against the possibility of artificial intelligence. AlphaGo isn’t the only world champion 
that is a computer. Computers are now better than humans in a wide variety of games 
including Backgammon, Poker, Scrabble, and Chess. Whenever someone tells me that 
computers can only do what they have been programmed to do, I list all the games 
where computers are already world champions. In almost every case, these computer 
programs were programmed by players of intermediate ability, and the program 
became world champions by learning to play better than us.

How does AI break?
Humans are robust decision makers. We can adapt easily to new circumstances. And 
our performance degrades gracefully when the problem changes slightly. This is far 
from the case with artificial intelligence today. We can change a single pixel and a 
computer vision system will classify a cat as a dog. Or more worryingly, a stop sign as 
a go sign. Even the impressive Alpha Zero program which learnt to play world class 
Chess and Go in a matter of a few hours has no idea how to play a game of chance 
like Poker. And it certainly has no idea how to translate from English into German. Or to 
interpret an x-ray.

When I talk to people about artificial intelligence, they often focus on the word 
‘intelligence’. This is perhaps not surprising. Intelligence is what lets humans dominate 
the planet, for better or worse. And intelligence is what AI is trying to build. But I also 
remind people to think about the word ‘artificial’. It might be a very different, a very 
artificial, intelligence to the natural intelligence that we have. 

A good analogy is flight. Artificial flight that humans invented is quite different to the 
natural flight that evolution found. We came at the problem of flight from a completely 
different angle to nature. We use a fixed wing and a powerful engine. Nature uses 
a wing that flaps. Both natural and artificial flight depend on the same theory of 
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aerodynamics. But they are different solutions to the problem. In a similar way, artificial 
intelligence may look very different to human intelligence. For example, it currently 
breaks in quite different ways to natural intelligence.

One important feature of AI today is that it is much more statistical than human decision 
making. If you ask Google Translate to convert “He is a nurse” into Turkish, and then 
translate the result back into English, you get “She is a nurse”. On the other hand, if 
you ask Google Translate to convert “She is an engineer” into Turkish, and translate 
the result back into English, you get “He is an engineer”. Turkish is a gender-neutral 
language, so both he and she get translated into the same word. But when translating 
back into English, Google Translate has some old-fashioned prejudices about nurses 
and engineers. If we’re not careful, AI will perpetuate many of the biases like sexism 
and racism that we’ve been trying to overcome for decades.

The reason for this gender bias is that Google Translate, like many machine learning 
algorithms, is based on statistics. And these statistics are generated by training on a 
corpus of text containing such gender biases. They thus reflect a bias that exists today 
in written text. But it is a bias that most of us wouldn’t want baked into our society. And 
even though AI systems are only just starting to enter the mainstream, many other 
examples of algorithmic bias have already been identified.

Technology companies have amplified the problem. They have promoted a myth that 
algorithms don’t have the unconscious biases of humans. They have suggested that 
algorithms simply and blindly serve up the best result. This lie has let them avoid taking 
responsibility. Humans are, of course, terrible decision makers. Behavioural economics 
is full of examples of their biases, and evidence that people often behave irrationally. 
But we can build machines that are just as biased as humans if we are not careful. 
In fact, algorithms are in some ways more problematic than humans. Unlike humans, 
many algorithms are unable to explain how they make their decisions. By comparison, 
humans can be asked to explain why they made a particular decision. But with most AI 
today, we simply have to accept the answer it gives.

One reason algorithms make biased decisions is that they are trained on biased data. 
We can train a machine learning program to predict who to hire. However, this is not 
trained on data about which people are actually the best to hire. We don’t know who is 
best to hire. Some people were not hired so we don’t know how well they would have 
performed in a particular job. We only know how the people who were actually hired 
performed. The training data may therefore have racial, gender and other biases which 
are reflected in its predictions.

There are also examples where algorithms have been intentionally designed to be 
biased. In 2012, it was discovered that Orbitz was offering Mac users more expensive 
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hotels than those using Windows. In particular, they were more likely to offer an 
expensive room to a Mac user, and a cheap room to a Windows user. Orbitz defended 
themselves by arguing that they were serving the needs of their customers, as 
Mac users spend around 30% more per night than Windows users. Orbitz claimed 
not to offer the same room at different prices to different users, but such dynamic 
pricing is the logical next step. Dynamic pricing may not sound fair, but it is legal in 
most countries. By finding features like operating systems that expose our different 
sensitivity to price, online retailers are likely to increase their profits. AI therefore 
throws up important issues about equitability and fairness.

In addition to fairness, there is a vital need for transparency in AI systems. We want 
decisions taken by machines not just to be fair but to be seen to be fair. This is a major 
challenge for AI systems today. Popular approaches like deep learning cannot explain 
how they made decisions in any meaningful way. Their decisions are often the product 
of being trained on more data than a human could look at in a lifetime.

Humans, of course, are also not very transparent. We are very good at ‘inventing’ 
explanations for our decisions. But there is a fundamental difference between humans 
making decisions and computers making decisions. We can hold humans to account 
for their decisions. If my decision results in harm being caused, I will face the financial 
or even legal consequences. Computers cannot be held to account in a similar way. It 
is thus more important that machines be able to explain their decision making.
Transparency will help to bring trust to systems. If a medical app recommends you 
need some dangerous treatment, most of us would prefer a transparent system 
that can explain what is wrong with us, and why this is the best course of action. 
Transparency will also help correct systems when they make mistakes. There are, 
of course, places where transparency might be a luxury. The control software to a 
nuclear reactor might not need to explain why it is shutting down. We might accept the 
inconvenience of losing power temporarily, compared to the risk of a melt down.

There are many other challenging problems in building AI systems that we can trust. 
It is unlikely that there is a simple or single solution to building trustworthy systems. 
However, we can learn from other areas. We literally trust doctors with our lives. We 
have built a medical system in which we can do so, safe in the knowledge that doctors 
who harm their patients will be struck off, and medicines that don’t work will not be 
approved. We perhaps need similar systems in place to ensure we can trust AI. This 
may require governments to regulate, industry bodies to set standards, as well as 
citizens to be better educated. We don’t expect consumers buying a new washing 
machine to know much about water conservation other than to look for the star rating. 
Perhaps we need similar mechanisms so consumers can trust AI?
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A final challenge regarding AI systems is accountability. Machines have no sentience. 
They do not suffer. They cannot be punished. It seems unlikely then that we can 
hold them accountable in any meaningful way for their actions. For example, when 
an autonomous car kills an innocent person, it is very unclear who we can hold 
responsible. This is an especial challenge with autonomous weapons where the 
design is actually to kill. Large numbers of AI researchers have called to regulate 
such weapons given the significant legal, technical and moral problems of allowing 
machines to decide who to kill.

Conclusion
It should be clear by now that AI offers significant promise to transform our society. The 
potential benefits of AI cover almost every aspect of our lives, including agriculture, 
banking, construction, health care, housing, education, entertainment, finance, 
government, law, manufacturing, mining, retail and transportation. Indeed, it is hard to 
think of an area that it will not touch. And the benefits are not purely economic. Artificial 
intelligence also offers major opportunities to improve our societal and environmental 
well-being. It can, for example, be used to make buildings and transportation more 
efficient, helping us conserve the planet’s limited resources, and tackle wicked 
problems facing the world, like climate change.

Alongside these benefits, artificial intelligence also presents significant potential risks, 
some of which are global. These risks include the displacement of jobs, an increase 
in inequality within and between countries, the transformation of war, the corrosion of 
political discourse, and the erosion of privacy and other human rights. Indeed, we can 
already see worrying trends in many of these areas. Further development of AI should 
therefore be directed to evolve society in a direction that improves prosperity, reduces 
inequity, improves political engagement, and enhances the rights of all citizens.

Given these opportunities and risks, we need to ensure that AI is developed for the 
common good and that no one is left behind. The protection of human rights and 
fairness must be built in from the start. This will ensure that AI benefits all parts of society. 
Meaningful dialogue between civil society, industry, academia and government will be 
needed to decide the kind of society we want for future generations. The public will 
need to be actively engaged in this dialogue as it is their future which is being decided.

One area of significant importance is inclusivity. Artificial intelligence offers many 
opportunities to make society more inclusive. Those with difficulties hearing can use 
AI to hear. Those with difficulties seeing can use AI to see. AI can also help those with 
learning difficulties to learn. AI thus offers the possibility to improve the lives of people 
with disabilities, as well as many groups experiencing disadvantage. 
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To ensure the benefits of AI are shared amongst all these parts of society, we will likely 
need regulation. This may involve legislation to ensure the technology is built with 
accessibility and equity at its centre. We may need to extend legal concepts such as 
liability to decisions made by AI, as well as develop ethical standards for AI systems. 
Regulatory systems developed to ensure the safe and inclusive deployment of AI must 
increase public trust in these technologies and limit adverse outcomes. We already 
see a growing mistrust in AI which threatens the ability of society to take advantage 
of these technologies. There is an especial need to consider the human rights 
implications of AI based technologies, especially regarding areas such as privacy, 
discrimination, bias and transparency. 

In the last few years, many ethical frameworks have been proposed by government, 
industry and civil society to deal with the challenges that AI poses. However, it is also 
becoming clear that it is often basic human rights like privacy that are under threat. We 
may not need too many new laws but simply to apply more vigorously existing ones. 
We may also wish to follow other counties like the UK in having an independently led 
AI body that brings stakeholders together from government, academia and the public 
and private sectors. This body could provide a critical mass of skills and leadership to 
develop AI technologies ethically. If we get it right, we can hope that our grandchildren 
will inherit a better, fairer and more prosperous AI-powered world.
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A MATTER OF 
PERSPECTIVE:

Discrimination, bias and  
inequality in AI

Katie Miller

An Aboriginal woman is refused housing.
A man with a disability is refused a contract for a phone service.
A woman is denied employment as a pilot.

Each of these examples involve discrimination. But discrimination by whom? Can you 
distinguish the case where the discrimination is caused by a human and the case 
where the discrimination is caused by artificial intelligence (AI)?

This is the challenge presented in an age when some decisions are made by humans, 
some are made by AI, and some are made by a combination of AI and humans. For the 
person refused housing, a phone service or employment, the experience is the same 
– but the ability to understand what has happened and obtain a remedy may be very 
different if the discrimination is attributable to, or contributed by, an AI system.

The questions posed above are, of course, trick questions. Each of the examples 
given have resulted from discrimination by humans in the past.6 Each of the examples 
given could, or already have, resulted from the use of AI systems. Each of the 
examples given can result from direct discrimination on the basis of race, gender or 
parental responsibilities, or indirectly through discrimination on the basis of criminal 
record, employment status or mental health status. One of the challenges presented 
by AI systems is that we increasingly do not know why decisions are made or how 
traditionally protected attributes factor into AI decisions, recommendations and advice.

If we are to preserve the policy intentions of our discrimination, equal opportunity and 
human rights laws, we need to understand how discrimination arises in AI systems, 
how design in AI systems can mitigate such discrimination, and whether our existing 
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laws are adequate to address discrimination in AI. This chapter endeavours to provide 
this understanding. In doing so, it focuses on narrow, but advanced, forms of artificial 
intelligence, such as natural language processing, facial recognition and cognitive 
neural networks.

Are we speaking the same language?
The challenges of discrimination, bias and equality in AI involves the intersection of 
multiple domains of law, sociology and technology, each with their own experts and 
language. In order to have a shared understanding of the issues and possible  
solutions, we must first ensure that we are speaking the same language. In particular, 
we need to know what we mean by ‘discrimination’ and ‘bias’. While the same words 
may be used across domains, they can have different meanings and connotations 
within different domains.

Discrimination
In everyday speech, to ‘discriminate’ is to “note or observe a difference; distinguish”,7 
and ‘discrimination’ is “the process of differentiating between persons or things 
possessing different properties”.8 Understood in this sense, an AI system is a 
discriminating machine. The ability to discriminate, quickly and over large data sets, 
is one of AI’s greatest strengths and a large part of the reason for its adoption and 
incorporation into so much of our daily lives. For example, AI assistants such as 
Cortana, Siri and Alexa rely on natural language processing, speech recognition and 
deep learning algorithms that can differentiate between words (or the sounds we use 
to represent words) and the contexts in which they are used.9

In a legal sense, ‘discrimination’ involves treating, or proposing to treat, someone 
unfavourably because of a personal characteristic protected by law.10 For example, 
refusing a person a job because of their gender, racial background, disability or sexual 
orientation constitutes an unlawful form of discrimination.

Considerations of discrimination in AI involve questions about the types of 
discrimination that are acceptable, desirable and intended. Discriminating between 
cancer cells may be acceptable, desirable and intended.11 Discriminating against 
women may not be acceptable or desirable – and, depending on the design of the AI 
system, such discrimination may not be intended.12 The challenge for designers, users 
and subjects of AI is that cancer cells are clearly something we want to discriminate 
against – they are objectively ‘bad’. People are more complex – and so too the 
questions of when it is acceptable or desirable to discriminate against them.
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The legal concepts of direct and indirect discrimination are both important and 
helpful to the discussion about discrimination in AI systems. Understanding these 
concepts can assist in designing AI systems that are lawful because they comply 
with discrimination laws. More fundamentally, they are helpful in ascertaining if the 
discrimination undertaken by an AI system is acceptable or desirable.

Direct discrimination occurs when a person is treated less favourably because of 
an attribute that is protected by law, such as race, gender, religious belief or (dis)
ability. Laws prohibiting direct discrimination are based on the idea that a person’s 
protected attribute must be an irrelevant consideration when dealing with that person.13 
Discrimination is prohibited not just on the actual protected attribute, such as a 
person’s gender, but also characteristics that are stereotypically attributed to persons 
of the protected group. Such imputed characteristics can include the susceptibility 
of married women to the influence of their spouses, and the clothing and grooming 
preferences of persons of particular sexual orientations.14

Indirect discrimination is directed towards activities that are “fair in form but 
discriminatory in outcome”.15 It requires consideration of how an ostensibly neutral 
action affects people with one or more protected attributes. For example, preferring 
to employ people who can attend work at 8am may indirectly discriminate against 
parents who have child care responsibilities for young or school-aged children. 
Indirect discrimination is not automatically unlawful; it requires consideration of the 
reasonableness of that requirement.16

This distinction between direct and indirect discrimination finds an analogy in 
algorithms and mathematics, where a distinction is made between direct and indirect 
variables. Direct variables are specific characteristics that the algorithm is programmed 
to recognise and consider; indirect variables, or ‘proxies’, are statistical correlations 
between one attribute, such as a postcode, and another attribute, which may or may 
not be protected, such as race or social class.17

If and when an AI system is challenged for breaching discrimination laws, there will 
be complex and novel arguments about whether an AI system is engaged in direct 
discrimination and whether it can be said that an AI system involves a “requirement 
condition or practice” constituting indirect discrimination.18 This chapter does not 
engage with these complex arguments, which will no doubt depend on the particular 
circumstances of the AI system and discriminatory effect alleged. Instead, it is sufficient 
for now to distinguish between the AI system coded to rely or use directly protected 
attributes such as gender, race, (dis)ability; and the ostensibly neutral AI systems that 
operate in a discriminatory way.
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Bias
Understanding the meaning of ‘bias’ is arguably more straight forward. While used 
in different ways between law and technology, the mechanism is generally accepted 
across domains. ‘Bias’ refers to a predisposition, prejudgment or distortion. In law, this 
often refers to a prejudice, inclination or prejudgment of a question.19 In technology 
and mathematics, ‘bias’ may refer to a “systemic distortion of a statistical result due to 
a factor not allowed for in its derivation”.20 Across the domains of law and technology, 
bias implies that some parts of the picture are being preferenced, and others ignored. 

Bias is generally recognised as a problem to be managed and something that can 
affect the integrity and quality of the final result – whether it be a decision by a 
government official or the ability of an AI system to recognise and match a face 
accurately. We strive for unbiased AI systems because we implicitly understand and 
accept that a biased decision is less desirable than an unbiased decision.

Yet there is a tension in our desire for unbiased AI systems, because every AI system 
has some inherent bias. Any AI system is limited, in the sense that it is merely a 
model or representation of a real-world situation.21 In designing and implementing the 
model, choices are made about what to include or exclude. Just as we are becoming 
increasingly aware of the inherent, unconscious biases that all humans have,22 so too 
must we be open to the presence of inherent bias in AI systems and models.

Equality
Related notions of ‘fairness’ and ‘equality’ are much more complicated – and always 
have been. There are different formulations and understandings of both ‘fairness’ and 
‘equality’ across societies, cultures, and socioeconomic divides.23 Our understanding 
of what is fair or equal can change depending on whether we consider it from our 
position as an individual or as between groups; and when we consider the extent to 
which we can control or influence particular outcomes.24

Both law and technology offer responses to the philosophical questions of ‘what is 
fair?’ and ‘what is equal?’, which are informed by and applied within their respective 
domains. For example, in administrative law, a distinction is drawn between substantive 
fairness – the fairness of a decision or outcome, and procedural fairness – the 
fairness of the manner in which a decision is made. The latter attracts remedies in 
administrative law, whereas the former does not.25 In discrimination law, a distinction 
is drawn between equality of outcome and equality of opportunity; some advocate 
that laws should be directed towards equality of outcome whereas others argue that 
equality of opportunity is sufficient.26
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Within the domain of artificial intelligence, ‘fairness’ can refer to notions of parity 
between data sets, classifiers and outcomes.27 Each of these definitions is workable 
within the respective domain. However, they necessarily represent particular 
perspectives, which ignore many facets of fairness and equality that may be provided 
by other perspectives, such as cultural or philosophical perspectives. The difference 
in language, which in turn is based on a difference of conceptual understanding, 
makes any discussion about whether an AI system is ‘fair’ or produces ‘equal’ results 
challenging. For present purposes, it is sufficient to note that real differences in 
language exist, and encourage AI users and designers to be transparent about how 
they define fairness and equality when using such terms.

The promise of AI 
AI is not the only machine that can discriminate. The human brain has also evolved 
to be a highly effective discriminating machine, filtering irrelevant information and 
creating mental heuristics to discriminate quickly between friend and foe; in and out 
groups. While useful to our early survival in ensuring we could quickly identify a threat 
and respond to it, these heuristics also inform the stereotypes and quick judgments 
that underpin or lead to discrimination.28

We are increasingly aware of the role that unconscious bias and human fallibility play 
in human decision making and discrimination. Humans segregate people on the basis 
of medical conditions,29 refuse to make adjustments for people who use different 
languages,30 and treat women employees unfairly when they are pregnant.31 Humans 
are less inclined to grant parole immediately before lunch than after,32 are more likely 
to perceive male candidates as competent and worthy of higher salaries,33 and more 
likely to prefer names that don’t “sound foreign”.34 We suffer from the halo effect and 
confirmation bias – and can become more discriminatory, the more objective we think 
we are.35

Mental heuristics assist us in rendering complex information simple, distinguishing 
between relevant and irrelevant information and to make decisions quickly. Yet these 
are also the conditions in which an AI system will excel. An AI system can process 
large amounts of data quickly, differentiating between the relevant and irrelevant and 
rendering the complex simple.

AI systems may therefore present opportunities to replace or support fallible human 
decision makers with objective, rational technology systems, thereby reducing the 
risk of discrimination. AI systems have been used to increase diversity in employment 
practices,36 select members for company boards,37 as well as increase access to 
financial services for traditionally under-represented consumer cohorts.38
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Replacing humans with AI systems enables data to be sorted and differentiated at high 
speed and with access to a greater range of data and evidence than humans could 
process efficiently. AI can be programmed to exclude certain matters from the data set 
or algorithm more cheaply and effectively than training humans not to have regard to 
such matters or enforcing laws that prohibit them from doing so. AI does not get tired, 
hungry or distracted by the challenges of their personal lives.

Even where humans remain in control, AI can inform, support and assist our decisions 
and functions. AI provides insights and identifies patterns that humans could not 
effectively or efficiently do alone. AI replaces the gut instincts and reliance on personal 
experience that often inform human efforts to predict risk.

AI can also promote less discriminatory policy by analysing big data to identify trends, 
norms and outliers in our social practices and policies. Regulators could use AI systems 
to understand and monitor how different groups within society are treated in the 
provision of goods and services and to identify outliers who may be discriminating 
directly or indirectly. For example, analysing payroll tax, employment data, and data 
about maternity leave payments, could reveal insights about which employers have 
employees end their employment in close proximity to pregnancy or birth, which may in 
turn invite consideration of whether the employer’s policies and practices are directly or 
indirectly discriminating against women on the basis of pregnancy or status as a parent.

One of the harms inherent with discrimination is that it treats an individual according to 
the characteristics of the group to which they belong, or are assumed to belong, rather 
than treating the individual on their own merits.39 For decades, both policy makers and 
businesses have sought to decrease their reliance on broad-brush generalisations and 
potentially discriminatory stereotypes by increasing their understanding of individuals 
within groups through surveys, statistics and customer research.40 AI systems carry the 
allure and promise of perfecting targeting and matching, thereby allowing governments 
and businesses to meet the individual’s personal needs – whether it be in the context 
of social services or music preferences.

Improved targeting of individuals could result in people who are eligible for social 
security payments being identified and paid their entitlements – “no more and no 
less”.41 It can also improve risk-based approaches to the use of state power, reducing 
the bureaucratic burden on those who are not a risk while focusing resources on 
those identified as a risk.42 This can reduce the time the average traveller spends at an 
airport by focusing on persons identified as being a higher risk of infringing immigration 
requirements.43 Implemented well, such systems carry the promise of reducing friction 
– for both government and citizen – in the administration of government schemes  
and functions.
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The dark side of AI
AI carries the promise of decreased discrimination and enhanced efficiency. But is that 
promise always realised?

The Australian Human Rights Commission and World Economic Forum have identified 
several ways in which AI is susceptible to discriminating and operating unfairly:44

• AI is designed by human beings who possess inherent biases and is often 
trained with data that reflects the imperfect world in which we live.

• Training AI systems with data that is not representative or using data that 
reflects bias or prejudice – for example, sexism or racism – can lead to an AI-
supported decision that is unfair, unjust, unlawful or otherwise wrong.

• AI’s algorithms can include discriminatory variables – for example, including 
a variable for private school attendance in a loan application algorithm – that 
results in further discrimination.

• Where users do not understand AI’s limitations, especially if they assume AI’s 
predictions to be more accurate and precise (and thus more authoritative) than 
those made by people, this can result in unfairness.

• AI can be deployed in an inappropriate context, for example, deploying a model 
in a different cultural context from that in which it was originally trained.

• Personal data is the ‘fuel’ for AI. It can be at risk when deployed in machine 
learning models, as hackers can often threaten individual privacy by reverse-
engineering algorithms, which could allow access to the personal data the 
algorithm is trained on.

As AI systems become more prevalent around the world, more examples of 
discrimination in AI are being discovered. Some of these are outlined below.

• Amazon’s experimental hiring tool, which used AI to review resumes and give 
a job applicant’s resume a score from one to five stars. The experiment was 
discontinued after Amazon realised the tool was biased towards men. The data 
used to train the AI tool was 10 years’ worth of resumes submitted to Amazon, 
most of which came from men because men still represent the vast majority of 
employees in the technology industry.45

• Centrelink’s ‘Robodebt’ algorithm is more likely to raise a disputed or unfair  
debt for a person with inconsistent income and work hours because it relied  
on averaging annual income reported to the Australian Taxation Office across 
26 fortnights and using that average as evidence of an overpayment in a  
given fortnight.46
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• Companies advertising housing on Facebook were permitted to exclude 
persons of particular races from seeing the advertisements.47

• A US Immigration algorithm used to assist immigration officials decide whether 
to detain or release a person pending deportation was modified to remove the 
system recommendation of ‘release’ – resulting in the only possible answer 
being ‘detain’.48

• Online targeted advertising through popular search engines and email services 
can change depending on whether the names used in association with those 
searches and email services are associated with particular racial backgrounds.49

• AI systems used to predict a person’s risk of recidivism underestimates the 
recidivism risk of white people, while overestimating the recidivism risk of  
black people – and ultimately are no more accurate than random human 
decision makers.50

• Voice recognition software appears to respond more accurately to male voices 
than female voices, as well as people with certain accents and first languages.51

We readily recognise discrimination in an AI system when we can identify that a person 
has been unfairly denied a service, opportunity or resource or, alternatively, has been 
unfairly targeted for scrutiny, investigation or suspicion. This form of harm is described 
as ‘allocative harm’.52 It is the type of harm that most aligns with our understanding of 
direct discrimination – a person denied or targeted for something based on an attribute 
or characteristic that is unrelated to the outcome. The bail and sentencing algorithms 
referenced above are recognised as being unfair and discriminatory because the 
outcomes produced are more influenced by a person’s racial background than the 
crimes they have committed or are alleged to have committed. The Amazon resume 
algorithm is recognised as unfair because it gives too much weight to being male 
without any evidence that men develop better software than women.

Discrimination in AI systems can also produce an additional, systematic harm, known 
as ‘representational harm’, which involves the reproducing and application of harmful 
stereotypes.53 Targeted online advertising algorithms are harmful not just because they 
result in people of colour being targeted for some services – such as exploitative loan and 
debt recovery services – or missing opportunities for other services – such as housing 
or certain types of jobs – but because they reinforce stereotypes about people of colour. 
The AI systems in turn absorb the lessons of these reinforced stereotypes, producing 
even more discrimination in the AI system. This phenomenon was seen in Microsoft’s 
chatbot, Tay, which, without the intention of its designers, learnt to be racist. Designed 
to learn from the tweets it was sent, Tay was vulnerable to learning (and did learn) to be 
racist after it was sent tweets containing intentionally racist and offensive content.54
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The interaction between human and AI systems can contribute to representational 
harms becoming allocative harms by converting, over time, an ostensibly neutral and 
objective AI system into one with discriminatory effect. For example, an AI system may 
identify (or ‘flag’) a child at risk of abuse using non-discriminatory characteristics. A 
human acts on this flag to conduct an investigation into the circumstances of the child 
and their family. The investigation produces more data about the family, which is fed 
back into the AI system – enhancing the specificity of the algorithm in respect of the 
investigated family and families with similar characteristics. As a result, more children in 
similar situations are flagged – not necessarily because they are more at risk of abuse, 
but because there is more data about children like them in the AI system. The effect is 
discriminatory, without the design necessarily being so.55

Like all discrimination, representational harm is not the sole province of AI. 
Representational harm can also be seen in the discriminatory practices of humans 
and cultures of “deep-seated, pervasive prejudice that lingers”.56 Discrimination laws 
have traditionally not addressed or dealt with representational harm, preferring instead 
to focus on individual acts, harms and “overt, explicit and formal inequality”.57 This 
preference for the overt and tangible discrimination is reflected in discussions about 
reducing discrimination in AI, which focus on the reduction of allocative harm, rather 
than representational harm.58

Detecting discrimination in AI systems
Identifying that discrimination has occurred has always been a difficult task. In the 
words of Justice Kirby of the High Court of Australia, “human motivation is complex”, 
“[d]iscriminatory conduct can rarely be ascribed to a single ‘reason’ or ‘ground’ and 
much discrimination occurs unconsciously, thoughtlessly or ignorantly”.59 A person 
alleging discrimination is at a disadvantage, because the information relevant to 
whether discrimination has occurred or not is held by the alleged discriminator – who 
may be under no obligation to explain their decision and may not even be aware of the 
full reasons for their decision.60

These problems are present and compounded in the case of AI systems. AI systems 
allow fragmentation of responsibility for any particular decision or action. The person 
designing the AI system is likely to be different to the person using the AI system. 
When the user of the AI system is asked for an explanation, the most common 
response will be “because the computer said so”.61

Furthermore, technologists have focused much of their developments and research 
efforts on refining the outputs of AI systems, rather than explaining why those outputs 
are produced. The problem of ‘explainability’ has attracted more research attention in 
recent years, but researchers are playing catch up.62
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For a person who has been the subject of AI discrimination, the following barriers exist 
to understanding what has occurred:

1. The individual affected may not realise that an AI system has been used in 
making the decision or taking the action that affects them.

2. The user of the AI system may not be obliged to provide an explanation. This 
is generally the case where the decision or action is taken in a commercial 
setting. While there is a limited obligation to provide reasons in respect of some 
government decisions,i that obligation may not extend to assistance provided by 
an AI system, for example, where a risk assessment is provided to a human who 
ultimately makes the decision.

3. The AI system may be a ‘black box’, in that it may not be capable of producing 
an explanation. Increasingly advanced forms of artificial neural networks are 
producing outcomes based on correlations and patterns that are unseen to 
the human eye. From the perspective of data analytics, this is one of the key 
strengths of advanced neural networks. From an explainability perspective, it is 
a significant barrier.

4. The designer of the AI system may resist disclosing the AI system’s reasoning 
process in order to maintain commercial and competitive advantages and 
secrecy. While many AI systems are considered ‘black boxes’, so too are their 
creators.63

5. While the AI system may be able to produce an audit trail of the factors 
considered, such a trail may not extend to identifying why those factors have 
been marked as relevant to the decision or recommendation made by the AI 
system.64 Given that the power of an AI system is to identify and learn patterns 
drawn from large datasets over time, the answer to a question about the 
relevance of a particular feature may lie in millions of algorithmic cycles.

Technology can assist in helping disparate individuals understand that they share 
the experience of adverse action from an AI system. Social media in particular is an 
effective way of individuals sharing their experiences and ‘connecting the dots’ to 
understand that they have been subject to an algorithm.65 For example, our collective 
understanding of the technology system utilised by Centrelink to automatically raise 
debts (colloquially described as ‘Robodebt’) owes, in large part, to social media. The 
issue first came to mainstream attention after affected individuals posted on social 
media that they had received debt notices they did not understand. Social media 
helped similarly affected individuals to realise that they were subject to an automated 

i For example, s 8 of the Administrative Law Act 1978 (Vic) obliges some public officials to provide a 
statement of reasons in respect of certain decisions.
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system, rather than traditional, individualised human decision making. Social media 
facilitated the spread of understanding of how the system operated and tools and 
techniques to challenge it. Social media connected affected individuals with experts 
and advisors and created a community of sufficient size to attract attention from the 
media, politicians and oversight bodies.

Acting on this shared experience can be difficult due to the problem of explainability. In 
Europe, Article 22 of the General Data Protection Regulation attempts to remedy this 
by introducing rights in respect of automated decision making, requiring safeguards 
that may include a right to obtain an explanation of a decision reached and to receive 
meaningful information about the logic involved in automated decision-making.66 Such 
protections have not been introduced into Australian law.

Addressing discrimination
Although some anti-discrimination bodies have the power to consider systemic 
discrimination, Australia’s discrimination laws are still based on a model of individuals 
making complaints about specific incidents of discrimination.67 Given the barriers to 
individuals identifying that they have been discriminated against by an AI system, or 
understanding how that discrimination has occurred, the model of individual complaint 
is ill-equipped to effectively address discrimination in AI systems.

Technologists are aware of the problems posed by discrimination, bias and inequality 
in AI systems. The pursuit of ‘fairness’ in AI systems is increasingly a field of research. 
Researchers are posing different algorithms, mathematical techniques and definitions 
of ‘fairness’ to counter biases in datasets or discriminatory outcomes.68

It is unlikely that the problem of discrimination in AI systems will be solved by 
mathematics alone. Humans remain the designers, trainers and operators of AI systems 
– they are made in our image and reflect our own imperfect biases and prejudices. For 
mathematical solutions to fairness to be effective, they must be developed within “a 
framework that accounts for social and political contexts and histories”. Without such 
a framework, mathematical ‘solutions’ may “serve to paper over deeper problems in 
ways that ultimately increase harm or ignore justice”.69

The benefits of AI systems – such as increased efficiency and insights – largely 
accrue to the operators of AI systems who implement them within existing business or 
government practices. Just as a company or government agency would be responsible 
for any discriminatory actions of their staff, policies or procedures, so too should they 
be responsible for any discriminatory actions or decisions made by the AI systems they 
implement. This imperative is made stronger by the increasing understanding of the 
risks of discrimination in AI systems. If a body knowingly imports such risk into their 
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services and practices, it is not fair to then outsource the costs of those risks occurring 
to customers, citizens and the public.

For Victorian public authorities, the obligation to consider the potentially discriminatory 
effects of an AI system is even clearer. The Charter of Human Rights and Responsibilities 
Act 2006 (Vic) (Charter) obliges public authorities to consider and act compatibly with 
human rights. One of those rights is the right to recognition and equality before the law, 
which includes the right to equal and effective protection against discrimination.

Operators of AI systems should review and monitor their AI systems for indicators of 
discrimination, bias and inequality. This requires consideration across the “full stack 
supply chain” of an AI system, encompassing the “origins and use of training data, test 
data, models, application program interfaces, and other infrastructural components 
over a product life cycle”.70 

In particular, an operator of an AI system should:

• ask the vendor of the AI system about how it has been programmed and trained 
to counter potentially discriminatory actions;

• consider the effects of choices made in designing the model expressed in the AI 
system;

• consider and test for potential discrimination embedded in any training data;

• supervise machine learning to detect early if the AI system is learning to be 
discriminatory in process or outcome; and

• regularly test the outcomes of AI systems to identify if they are producing 
unequal results that may reflect discrimination and/or bias. 

Discovering that your AI system is discriminatory after it has been implemented costs 
time, money, and public trust and confidence. Remedying or retraining a discriminatory 
AI system is rarely a matter of ‘tweaking’ and often requires abandoning an existing 
system and developing a new one.71 Taking a proactive approach by involving affected 
communities can assist designers of AI systems to better understand the problem the 
AI system is trying to solve, the data on which the AI system is to be trained, and the 
effects of the AI system.72

Calibrating AI with human rights
Just as a mathematical understanding of fairness is inadequate on its own to address 
discrimination in AI, the lens of discrimination alone is inadequate to understanding 
equality.
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Laws against discrimination ensure that people are not treated unequally on the 
basis of protected attributes. However, laws prohibiting discrimination alone are 
insufficient to ensure that everyone is treated equally. As discussed above, concepts 
like ‘equality’ and ‘fairness’ are understood differently depending on our social, cultural, 
philosophical and ideological standpoints. In a liberal democracy, we accept some 
forms of inequality, such as those based on income, while prohibiting others, such 
as those based on gender.73 Even when discrimination is prohibited, inequality can 
remain due to the complex interaction of social, economic and legal practices. Pay 
discrimination on the basis of gender has been illegal since the 1970s, yet a gender 
pay gap remains.74 Understanding ‘equality’ requires us to understand how much and 
which types of inequality we accept and are prepared to justify.

Within the legal context, attempts have been made to reframe the contest about what 
constitutes ‘equality’, by understanding equality as fundamental to human dignity and 
protected to a minimum standard, when rights and freedoms that are recognised as 
common to all humans and integral to human dignity, are respected. In Victoria, those 
rights and freedoms find expression in the Charter.ii

AI systems engage human rights directly and indirectly; that is, both through the 
direct operation of AI systems, and indirectly by affecting the ability and confidence of 
persons to exercise their human rights.

The right to equality before the law
Given the preceding discussion about discrimination in AI systems, it is clear that AI 
systems engage the right to recognition and equality before the law, which expressly 
includes the right to protection from discrimination.

The right to equality before the law “prohibits treatment based on distinctions between 
persons which are arbitrary, in the sense of lacking objective justification, in the 
application and administration of the law”.75 In developing AI systems to apply and 
administer the law, there is a real question about whether distinctions drawn by AI 
based on group characteristics, correlations and imperfect data can be considered as 
having ‘objective justification’ and therefore not arbitrary.

The right to equal protection of the law without discrimination, and equal and effective 
protection against discrimination, requires equality in both the content and outcome 
of the law. It is not sufficient to ensure that the processes or opportunities are 

ii Similar Acts are found in the ACT and Queensland: see the Human Rights Act 2004 (ACT) and Human 
Rights Act 2019 (Qld).
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equal; the outcome of the law in action must also be similar across different types of 
people. As such, both the processes and outcomes produced by an AI system must 
be non-discriminatory. The right to equal protection of the law protects against the 
possibility that discriminatory outcomes of an AI system – such as disproportionately 
misidentifying people of colour, or targeting for audit or inspection women of child-
bearing age – cannot be ignored or excused on the basis that the code was not 
designed to be discriminatory.

The right to privacy
The right to privacy is most obviously engaged by AI. It is a concept that ‘defies precise 
definition’.76 With each new era of technology comes a new concept of privacy. The 
existing paradigm that underpins most privacy legislation in Australia is ‘information 
privacy’, which is closely related to the concept of ‘data protection’ and was developed 
when computerised databases and ecommerce were the new technologies 
challenging our sense of privacy. The growth of cloud computing and algorithmic 
search functions has prompted debates about our right to be forgotten.77 AI, combined 
with drones, CCTV networks and digital tracking, provokes debates about spatial 
privacy, the right to be left alone, and the right to obscurity.78

Implicit in these concepts about privacy is a recognition that privacy has traditionally 
been protected by practical limitations. It was once very expensive to undertake 
widespread surveillance and it was therefore unnecessary to express legal protections 
in great detail. Advances in technology, including AI, have made surveillance cheap, 
and access to it universal and easy. Our laws have not adapted to recognise this reality 
and our debates about the privacy impacts of AI continue to be characterised by a 
legal standard developed for a less invasive form of technology.

Under the Charter, the right to privacy is expressed as a right to not have your privacy, 
family, home or correspondence unlawfully or arbitrarily interfered with; and to not  
have your reputation unlawfully attacked.79 Arbitrary interferences with privacy may 
include interferences that are “capricious and not based on any identifiable criterion 
or criteria”80 and interferences that are “unreasonable in the sense of not being 
proportionate to a legitimate aim sought”.iii 

AI systems involve potentially arbitrary interferences with privacy. For many computer 
scientists, the answer to poor AI outcomes is often ‘more data’. Yet the more data 

iii The question of whether ‘arbitrarily’ should be given its ordinary English meaning or a meaning informed by 
human rights jurisprudence is an unresolved question. See Pound, A. & Evans, K. (2019). Annotated Victorian 
Charter of Rights (2nd ed), Thomson Reuters (Professional) Australia Limited, p. 11.
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collected, the more the data collection approaches capriciousness and becomes 
disproportionate to the end sought. As AI advances, it may be capable of taking more 
actions that cannot be explained by the humans programming the system. As the 
criteria on which actions are taken become less identifiable, the more AI systems start 
to act in ways that seem capricious and unreasonable.

Freedoms of association, expression  
and movement
AI systems may also indirectly engage some of the ‘freedom’ rights, such as freedom 
of movement, freedom of expression and freedom of association. While an algorithm 
per se does not stop a person moving about Victoria, expressing their views verbally 
or in print, or joining groups, AI systems do facilitate the surveillance of such activities. 
AI systems regularly use data from the devices we carry with us daily, especially our 
mobile phones and tablets. AI systems are fed and can produce data about where 
we are and with whom. We are already familiar with advertising targeted to particular 
mobile devices in particular locations. It is just as possible that such technology could 
be used in ways that deter people from exercising their freedoms.

When the machine knows us better than we know ourselves – knows when we are 
pregnant,81 seeking mental health services, or associating with people who may be 
seen as undesirable – we are each compelled to take evasive action on a daily basis, 
never knowing when our actions may be captured by the AI system and rendered 
meaningful. The feeling of being watched may alone be sufficient to deter people 
– especially those from marginalised or minority groups – from feeling truly free to 
exercise their human rights. People with characteristics flagged as ‘risky’ and subjected 
to increased monitoring may find themselves needing to “do more to prove and justify 
themselves simply because they ‘look’ like past transgressors”.82

Some European authorities have found that storage of personal information on 
registers as a means of surveillance constituted an unjustified interference with the 
rights of freedom of assembly and expression, even where it had not been established 
that the person’s exercise of their rights had in fact been hindered.83 In Victoria and the 
UK, courts and tribunals have been less willing to accept that collection and storage 
alone will constitute an unjustified interference without evidence that there has, in fact, 
been a ‘chilling effect’ and persons in fact deterred from exercising their freedoms.84
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Conclusion
AI systems are discriminating, data hoarding machines that provide the means for 
surveillance. While AI systems have the potential to both help or harm humans, they 
may not be not neutral. At every stage of their development and use, AI systems may 
discriminate in ways that adversely and unfairly affect humans. The humans inviting AI 
systems into our workplaces, economy and justice system should be aware of these 
risks and manage them proactively.

So too should our lawmakers. While discrimination by AI systems may be unlawful 
under existing discrimination laws, establishing the case will raise novel and complex 
arguments about definitions and attributes. Would an AI system be considered as a 
‘condition or requirement’ for the purposes of indirect discrimination? Would an AI 
system that was not programmed to consider protected attributes nevertheless be 
considered to have directly discriminated if it learnt discriminatory patterns through 
machine learning? The benefits of AI systems will accrue to their operators, while the 
costs of testing whether our discrimination laws are adequate in the face of AI systems 
will likely fall to the people discriminated against by the AI system.
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ALGORITHMIC 
TRANSPARENCY AND 
DECISION-MAKING 
ACCOUNTABILITY:

Thoughts for buying 
machine learning 
algorithms

Jake Goldenfein

More than 20 years ago, Helen Nissenbaum published ‘Accountability in a 
computerized society’, asking questions about how to think about accountability and 
responsibility in the unique environments of software production.85 The problems 
of accountability she described then have been amplified further as computing 
technologies have become more complex and less intelligible. Nevertheless, these 
technical systems are increasingly adopted by governments, who at the same time 
import their accountability deficits into their regulatory function. This has prompted a 
great deal of research into ways to achieve algorithmic accountability and transparency 
in automated decision-making systems – especially those used in public governance.

Good accountability for the implementation of decision-making systems is far from 
simple, with multiple overlapping institutional, technical, and political considerations. 
In automated decision systems, the accountability typically associated with a public 
official (the human decision-maker) is displaced into the actions and decisions of those 
creating system specifications, software engineers, and any other party involved in 
producing the decision-making system. Questions of accountability therefore need 
to be considered prior to the deployment of a system, rather than after any decision 
is made. That means the ideal time to address questions of accountability and 
transparency in automated systems is during their procurement and development.



42

Thinking about accountability and transparency at that early stage requires knowing 
how automated decision systems actually work, knowing what to ask for when 
procuring such systems, and building the capacity to evaluate whether systems do 
what vendors say they do. In order to assist with thinking about accountability and 
transparency in procurement, this chapter describes some contemporary transparency 
and accountability mechanisms for automated decision systems, while at the same time 
offering some warnings about their susceptibility to industrial or corporate co-option 
that risks undermining their utility.

What algorithms?
Questions of accountability in AI systems have been studied for a long time, especially 
in the context of symbolic AI or ‘expert systems’. That type of automated decision-
making technology uses a ‘rule base’ wherein a certain body of knowledge – typically 
a decision-making process as specified by legislation, regulation, or policy – is 
represented symbolically, often through ‘if-then’ rules. Systems that encode legislative 
or regulatory rules for decision automation in this way make up the majority of 
automated decision-making system used by governments. In the Australian context, 
there has been some policy guidance on the deployment of automated decision-
making in administrative government for expert systems. 86

While questions of accountability and transparency with respect to those technologies 
are a long way from being solved, the focus of this chapter is a different type of 
automated decision-making technology that is increasingly the focus of scientific 
research and government procurement – machine learning. These systems do not 
simply automate rules, but instead use large amounts of data and statistical pattern-
matching to generate predictions, classifications, scores, and decisions. In the machine 
learning domain, there is an ongoing and lively debate about what is necessary for 
transparency and accountability. Whereas expert systems require a direct translation of 
existing rules into a programming language, machine learning systems analyse the past 
(in the form of data), cluster that data according to certain ‘features’, and then generate 
a rule that correlates subsequent input data with a classification, without a human 
directly programming how those classifications are made. Not having a professional 
that can explain why they encoded a rule in a particular way, as with expert systems, 
makes accountability more complex. 

Jenna Burrell has described the three forms opacity in machine learning systems that 
present the greatest challenges for accountability and transparency. These are: 

• corporate concealment or trade secrets that may ultimately constitute some 
type of knowing deception; 
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• the reality that few people are sufficiently knowledgeable with relevant 
programming languages and machine learning systems; and 

• that the complexity and dimensionality (high number of data points per sample) 
of the statistical processes used in machine learning means decisions are not 
consistent with human-scale reasoning.87 

Each of these issues make algorithmic accountability and transparency – and ensuring 
that the values of public governance are embedded in decision-making systems – very 
difficult. They also make the landscape of government procurement for these systems 
particularly fraught. In particular, opaque automated decision-making systems risk 
undermining the already limited mechanisms that afford access into, and oversight of, 
government decision-making processes. 

There are multiple ways that machine learning systems might be implemented by 
governments, and different applications require very different accountability and 
transparency approaches. In some contexts, machine learning outputs may enact 
a fully automated decision. Alternatively, such a system may only inform or assist a 
subsequent decision made by a human. There are also examples of algorithms being 
used to optimise public services, like public school bus routes and schedules in the city 
of Boston,88 and thus not for individual decision-making, but rather allocating broader 
infrastructural services. Each of these types of implementation requires different levels 
of consultation with stakeholders, different types of transparency, and different levels 
of institutional accountability. Accountability and transparency of automated decision-
making systems requires thinking beyond the technical ‘decision’, and including the 
broader decision system of technology, people, and institution. To that end, the focus 
on accountability here is not limited to technical artefacts but must also extend into 
the relationship of those technical artefacts to decision processes more generally, 
including processes of development and implementation. 

Dealing with these issues at the design and procurement stage is a critical way to make 
up for the problematic belief that a ‘human-in-the-loop’ is an adequate solution for 
accountability. As the studies into ‘automation bias’ (the phenomena whereby humans 
uncritically defer to the outputs of technological systems) show,89 a ‘human-in-the-loop’ 
is rarely going to be a sufficient solution to the accountability deficit these systems 
generate. In fact, in many cases, the idea of a ‘human-in-the-loop’ is a red-herring, 
especially if that human does not sufficiently understand, and cannot meaningfully 
explain, the basis on which a system has come to a determination. Rather, the time and 
place for instilling public values like accountability and transparency is in the design and 
development of technological systems, rather than after-the-fact regulation and review. 
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Various accountability and transparency mechanisms are discussed below, including 
‘human-in-the-loop’ approaches, institutional transparency tools, fairness in machine 
learning, and explainable automated decisions. The next section, however, first offers a 
fuller example of the use of statistical prediction systems in a specific context.

Automation in justice and policing applications
Automation is used across multiple domains of government, each with their particular 
idiosyncrasies and regulatory environments. This section briefly describes the uptake 
of automated systems in the particularly fraught domain of risk assessments for 
policing and criminal justice. 

It should be noted that beyond criminal justice applications, machine learning systems 
are being deployed around the world in, for instance, determining access to welfare 
benefits, public housing, educational resources, as well as for immigration decisions, 
and in many other fields. Many of the issues that have been brought up in the context 
of risk assessments are also critical issues in those other domains, however. That said, 
often the issues are very different. This overview of risk assessments here is thus not 
intended to be a comprehensive outline of all the problems these systems generate. 
Rather, these examples are described because they clearly demonstrate some of the 
risks associated with the use of automation and statistical approaches in government 
decision-making, and the issues associated with private industry developing software 
for public governance. 

Although criminal intelligence and security tools are sometimes very sophisticated, the 
majority of automated systems in policing and criminal justice applications are relatively 
simple prediction systems. While intelligence systems might analyse data generated 
from a wide variety of sources,90 risk assessments typically use a limited, and human 
curated dataset. Machine learning approaches look for statistical likelihoods of, for 
instance, re-offending, within that curated data to generate risk scores for decision 
subjects. This is a way of automating the ‘actuarial approaches’ that have been 
dominant in criminology, penology, and scientific governance for some time. Bernard 
Harcourt describes the types of questions commonly used in parole decisions, with 
categories such as criminal history, education and employment, financial position, 
family and marital status, accommodation, leisure and recreational interests, 
companions, alcohol and drug status, emotional and personal characteristics, and 
attitude and orientation.91 Contemporary automated systems used for determinations 
about bail, parole, or sentencing use relatively similar data. With machine learning 
however, which particular data points (or features) are used in the calculation, and what 
weight (or significance) they have to the determination becomes less clear. 
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Risk assessment systems can be traced back to the increasing use of statistics 
in criminology and penology from the end of the 19th century for the sake of 
individualising criminal sanctions and imprisonment. Statistical approaches supposedly 
allowed for greater control of individual behaviour and shifted the role of incarceration 
to a method of general crime prevention. As the statistical work developed, it was used 
to analyse whether there was a social benefit in focusing penological and policing 
resources on specific offenders that supposedly committed the majority of crime. 
The ideological premise of that approach was the ability to predict dangerousness 
through the probabilistic relationship between certain characteristics or behavioural 
traits and criminality. Through the middle of the 20th century, the RAND Corporation 
in the United States (US) pushed this statistical work on risk assessment tools further 
under the moniker of ‘evidence-based practices’, and many of the privately developed 
products on the market grew out of that intellectual environment. Risk assessments 
for bail, parole, and sentencing are now extremely common in numerous jurisdictions, 
especially in the US.

Another application of automated decision-making becoming more widely used is 
‘predictive policing’.92 Typically, predictive policing focuses on questions of ‘when’ or 
‘where’ crime is likely to occur, but more and more, also ‘who’ is likely to be involved. 
Private vendors such as Palantir, a company launched shortly after the September 11 
attacks, have already built systems trialled in US cities like New Orleans, Los Angeles, 
and Chicago. The data inputs for the New Orleans system included criminal databases 
looking at ballistics, gang, probation and parole data, jail telephone records, as well as 
central case management histories and a repository of ‘field interview cards’, for the 
goal of identifying potential future offenders and victims of crime. Field interview cards 
were collected from suspects and non-suspects when interviewed by police officers 
and greatly expanded the scope of data input for Palantir’s systems. The Verge has 
also reported that in 2016, the Danish National Police and intelligence services also 
signed an 84-month contract with Palantir for a similar predictive technology package 
to identify potential terrorists.93 That system, however, also uses law enforcement 
data taken from automated number plate readers and CCTV video, which would be 
analysed by computer vision systems. 

In Australia, the New South Wales (NSW) Police have been using an algorithmic risk 
assessment and predictive policing system called the ‘Suspect Target Management 
Plan’ (STMP) that generates lists of suspects for police targeting. Investigation into the 
system identified that 44% of individuals targeted were Indigenous.94 When questioned 
by the Legislative Assembly, the Minister for NSW Police refused to release any details 
on the procurement process or system itself.95 It is unclear if the NSW Police force 
even know what ‘features’ are used in that risk assessment software, or whether it was 
developed in-house or purchased as a product. Access to this material was refused 
by a NSW Tribunal, deciding there was an overriding public interest against disclosure 
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because of the system’s use in intelligence work.96 Apparently, a senior police officer 
oversees the validity of targeting on all occasions (as a human-in-the-loop), although it is 
unclear what role they actually play or how the system contributes to decision-making.

There are also several ‘transparency challenges’ for risk assessment tools, as well 
as other automated decision-making systems generally.97 When it comes to risk 
assessments and predictive policing specifically, there is already a growing literature 
that critiques many aspects of those systems, including the selection of data, their 
efficacy,98  their detrimental social impact,99 the problematic mismatch between the 
data used and the data that matters,100 the discriminatory over-policing, and the over-
incarceration of particular groups. But there are also transparency issues associated 
with these systems that generalise more readily to other machine learning applications. 
For instance, a critical problem is corporate reluctance to reveal which specific 
‘features’ are relevant in automated calculations, or what weight those features are 
given. A ‘feature’ is a data point that supposedly measures some meaningful aspect of 
the phenomenon being observed. 

Claims to trade secrecy here are particularly dangerous, and officials should refuse to 
work with vendors who are not willing to make their system sufficiently transparent for 
appropriate auditing and review. In the US at least, the courts seem content to protect 
those trade secrets claims, despite the clear necessity of auditing those systems for 
legality and desirability. 

In the high profile Loomis case, in which the applicant argued that the proprietary 
nature of the COMPAS risk assessment tool prevented challenging its scientific 
validity, the court refused to provide access to the vendor’s trade secrets for the sake 
of fairness auditing, despite acknowledging that meant it could not evaluate how 
features such as gender were used in the assessment.101 Even if courts are willing to 
protect algorithms as intellectual property however, the issue can be avoided by good 
procurement practices that ensure sufficient transparency from industry, and that trade 
secrets and copyright claims do not trump the values of good governance.

Scholars have also criticised the power of tech vendors in this domain, arguing it 
can constitute a form of undue influence.102 This dynamic sometimes means that 
governments have limited input into the design and specification of these products, 
including which datasets are, and are not, appropriate to include. Vendors may also 
refuse to share the data collected during the operation of their systems. Such de facto 
privatisation of public data must be resisted at every turn.

Certain risk assessment and predictive policing systems, have thus become 
emblematic of machine learning procurement processes gone wrong, and a 
demonstration of the problematic political economy shaping this environment. 
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Public sector agencies should recognise their power as market actors in these 
procurement contexts and use their positions to ensure automated decision-making 
systems perform adequately and appropriately, and are subject to proper governance 
and oversight. The procurement of these systems actually offers some space for ethical 
imagination with respect to the values they ought to be servicing, rather than merely 
eliminating the worst possible outcomes.

As noted previously, risk assessments are not the only applications of machine learning 
in government, and indeed some risk assessments do not use machine learning at 
all. There is a wealth of data available to government from various sources however, 
and this data can be used to train decision-making systems in multiple areas. Many of 
the issues described above in one domain can offer some useful lessons for thinking 
about accountability and transparency irrespective of application. To that end, a great 
deal of research into achieving transparency and accountability has emerged, which 
has generated a variety of approaches. These different accountability tools, and their 
limitations, are described in the following sections.

Human-in-the-loop
In Australia, there no explicit legal algorithmic accountability regime. The only (partially) 
regulated dimension of automated decision-making is the necessity of a ‘human-in-the-
loop’. However, even this issue is governed by antiquated policy, produced more than a 
decade ago, and in the context of different decision-making technologies.103  

That guidance suggests that full automation is permissible depending on the level 
of discretion provided by the legislation, for example, if the provision suggests the 
decision-maker ‘must’ or ‘may’ make a decision. Government lawyers also appear 
influenced by the principle from the 1943 case of Carltona Ltd v Commissioner of 
Works concerning the capacity to delegate decision-making powers,104 which has been 
interpreted to mean that as long as authorised by law, automated decision-making 
systems have few constraints.105 But this approach ignores critical concerns about the 
quality and validity of technical systems, how they are integrated into decision-making 
systems, and who ought to be involved in the process. 
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Figure 1 

Three different kinds of human involvement with AI: human-in-the-loop – where an AI 
system provides information to a human in order for them to make a decision; human-
on-the-loop – where a human supervises an AI system making a decision; and human-
out-of-the-loop – where an AI system makes a decision without any human involvement.

High-level political discourse also seems to suggest that a human-in-the-loop 
approach is adequate. For instance, in 2018, Michael Pezzullo, Secretary of 
Australia’s Department of Home Affairs – the department seeking to build Australia’s 
interconnected facial recognition system, and also the official in charge of Australia’s 
intelligence and security agencies and immigration decisions – made the claim that 
“No robot or artificial intelligence system should ever take away someone’s right, 
privilege or entitlement in a way that can’t ultimately be linked back to an accountable 
human decision-maker”.106 He called this the ‘Golden Rule’, which was then endorsed 
by Australia’s Chief Scientist, Alan Finkel.107 But this regulatory approach may be a 
distraction from the need for stricter rules regarding auditing or certification of decision 
systems, as well as the more important but labour-intensive process of scrutinising 
when, why, and how automated systems ought to be implemented. 

European data protection law has, since at least 1995, included limitations on 
automated decision-making,108 offering the right to obtain a human decision-maker in 
certain cases. This has been replicated in Article 22 of the General Data Protection 
Regulation (GDPR). These rights have been interpreted as requiring a ‘human-in-the-
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loop’, as they afford individuals a right to obtain human intervention, express their view, 
and contest a decision. Even though such provisions have been law for some time, 
there is growing awareness that they might not provide effective oversight of decision-
making systems, and there is no record of these Articles having ever been invoked or 
litigated. One reason for that may be that those laws are problematically vague.

To begin with, there are conceptual difficulties in identifying whether a decision is fully 
automated or not. Does a human decision-maker anywhere in the relevant information 
processing chain mean the decision is not made solely by an automated system? 109 
That a human decision-maker anywhere in the process might remove an automated 
system from the purview of the law is a worrying limitation. 

Some have argued that the EU text, “decision based solely on automated processing”, 
should still include decisions made with some human participation,110 although, in a 
decision on credit scores, the German Federal Court of Justice suggested any human 
participation in the decision would mean the law did not apply.111 What ‘degree’ of human 
intervention might be permissible therefore needs resolution. Further, it is also unclear 
what a contest made to a human overseer would offer. What different information could a 
person present to a decision-maker to challenge an automated decision?

The human-in-the-loop paradigm may make sense in certain very high-level 
applications, but it is hardly the structural solution to algorithmic accountability some 
might wish it to be. As technologies develop, the speed and scale of automated 
decisions may ultimately undermine the capacity for human supervision. 

The focus on a human-in-the-loop also risks taking attention away from the more 
important task of ensuring that systems are properly designed in the first place. That is 
why other provisions in the GDPR, such as the specific access rights dealing with the 
logic of decision-making systems (what is sometimes called a ‘right to explanation’), as 
well as requirements for certification, impact assessments and auditing, may be more 
relevant for transparency and accountability. However, these are not legally required in 
the Australian context. 

To be meaningful, the human-in-the-loop approach needs supplementation. When 
thinking through the design and specification of a system intended to inform a 
decision-maker, it is imperative that the human decision-maker knows how the system 
works, and understands the limitations of its outputs. Scholars like Mireille Hildebrandt 
have suggested ‘agonistic’ machine learning technologies be developed, wherein 
the system would demonstrate how each act of computation relies on a particular 
system of measurements, representations, and analytics.112 Ultimately, it requires 
ensuring that the results are presented to the decision-maker in a manner conducive to 
scepticism. This might mean including specifications about dashboard design and data 
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visualisation strategies when a system is being procured, as well as adequate training 
of human decision-makers for interpreting the outputs of opaque systems. Because 
machine learning is effectively premised on the capacity to make decisions using 
large amounts of data rather than with domain knowledge, a human-in-the-loop is only 
meaningful if experienced human decision-makers retain their capacity to express that 
domain knowledge, rather than simply rubber stamping an automated system. 

Institutional transparency and public values
There are many dimensions to algorithmic ‘transparency’, but in the context of 
institutional actors, it requires clarity in the procurement, implementation and technical 
mechanisms associated with automated decision-making systems. This type of 
transparency is useful for keeping track of the impacts of decision systems over time, 
and achieving some public disclosure on their purpose, reach, policies, and techniques. 
Freedom of information laws may appear relevant in this context. But while freedom 
of information may be available, and indeed may yield some useful documentation, it 
does not necessarily contribute to meaningful accountability. Good practice requires 
that when these systems are used in ways that affect people’s lives, there is sufficient 
consultation and review, such that accountability and transparency are built into the 
implementation process. The public should not have to use freedom of information 
against departments and agencies to find out how they are governed by automated 
technical systems. 

Researchers that have attempted to go through freedom of information processes, in 
the US at least, have achieved relatively little in terms of exposing either the contract 
terms between governments and private software providers, or any meaningful 
information about how that software actually works.113 Researchers working in this 
area have also demonstrated that trade secrets remain a critical obstacle when 
governments use systems produced by private software providers, as that forms the 
basis of an exemption from freedom of information. Even the preamble to the GDPR 
acknowledges that transparency and access rights must be balanced against the rights 
of those who build the technologies, including copyright or trade secrets. 114

Rather than thinking about whether or not information will have to be released under 
freedom of information laws, a better approach for good governance is to think about 
what information is meaningful to release, to whom, and when. Simply making all the 
information about an algorithmic process available may be of limited utility. To that 
end, some have proposed a ‘how’, ‘what’, ‘why’ model for thinking about the different 
types of disclosures necessary for regulating automated decision-making systems.115  
The ‘what’ question would ask the reasons for a specific outcome – for example, for a 
given input, what led to the output? The ‘how’ question is the set of rules that govern 
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the decision process and may involve exposure of its logic, including the particular 
algorithms and system design. The ‘why’ question looks to the ultimate goals of the 
system, the assumptions made in its implementation, data selection, and compliance 
with legal standards. 

Some researchers have argued for another approach to algorithmic accountability 
and compliance that would not require transparency, calling instead, for what Joshua 
Kroll and his collaborators call ‘procedural regularity’.116 These systems would enable 
the subjects of automated decisions to know that the procedure applied to them was 
the same procedure applied to everyone else, that the same policy is used for each 
decision, that those decisions are reproducible, and that the decision policy was 
specified before the particular subjects of the decision were known. Proponents of 
that approach cite the whole toolbox of computer science tools used for testing and 
verification of software, and mechanisms like zero-knowledge proofs (a computational 
way of proving that certain information exists without revealing that information), that 
can prove the existence of certain features without revealing the whole system’s 
operation. That approach, however, is primarily targeted at clearly egregious or abusive 
uses of those technologies, not necessarily for ensuring accountability in routine 
ordinary operation.

An approach gaining more traction, accordingly, is the embedding of structural 
compliance mechanisms in the form of auditing, certification, and impact assessments. 
As noted previously, the GDPR includes requirements for data protection impact 
assessments (Article 24), codes of conduct (Article 40), and certification (Article 42) in 
certain situations. 

In the US, some have argued for ‘public agency accountability’ that involves self-
assessments with respect to fairness, justice, and bias.117 Others frame these structural 
requirements in terms of ‘technological due process’ or as meaning the introduction 
of an ‘FDA for algorithms’.118 Danielle Keats Citron advocated for this approach as 
early as 2008, noting then that automated computer systems were becoming primary 
decision-makers in administrative decisions.119 She argued that a system of technological 
due process was necessary to bolster the procedural safeguards being undermined 
by automation, and considers the ‘due process’ clauses of the US Constitution (and 
other US federal and state laws) as an appropriate mechanism. This position was then 
extended in collaboration with Frank Pasquale to the use of scoring algorithms by the 
private sector,120 arguing that ‘technological due process’ – “procedures ensuring that 
predictive algorithms live up to some standard of review and revision to ensure their 
fairness and accuracy” – is the proper path to accountability. Whatever the specific 
approach, the intention is to bring public administrative law and constitutional-type 
accountability to automated decision-making systems.
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An example of technological due process in practice is New York City’s statutory 
taskforce on algorithmic accountability, which includes a fact-finding group of 
researchers to evaluate the city’s use of automated decision-making systems, but 
without exposing their technical details to the public,121 and without interfering with 
the trade secrets of the companies that build those technologies.122 The purview 
is systems used by the city for automated decision-making in policing and criminal 
justice, welfare entitlements, public housing, education, and wherever else. It is unclear 
whether disclosure to this taskforce has yet had any meaningful regulatory impact, or in 
fact whether the taskforce has even received any meaningful disclosures, indicating it 
might be a cynical political exercise.

Nonetheless, similar approaches are being suggested for the private sector, for 
instance, with the introduction of the US Algorithmic Accountability Act that would 
require automated decision and data protection impact assessments for ‘highly 
sensitive’ machine learning systems, produced by large companies, for bias and 
discrimination. Those compliance obligations would apply to any system affecting 
consumers’ legal rights, any system involving large amounts of sensitive data, or 
involving systematic monitoring of a publicly accessible physical space. This approach 
effectively legislates for ‘fairness’ requirements, discussed further below. However, 
this approach would require companies to perform impact assessments on their own 
decision-making systems, rather than instituting a government agency to perform 
audits and certification.

Compliance through self-regulation may have various benefits, but it also threatens 
the legitimacy of any accountability exercise. While the Algorithmic Accountability 
Act would encourage the participation of external third parties, independent experts, 
and auditors if reasonably possible, it does not create the bureaucratic compliance 
infrastructure that would be more useful, and that the GDPR, for instance, requires. 
Another problem is that the companies building automated decision-making systems 
are sometimes the same companies that build the auditing and fairness tools for 
evaluating those decision-making systems. To that end, when thinking through the 
regulation of these systems, instilling public values is a challenge that cannot be left to 
industry self-regulation. 

While total transparency may not be the most desirable outcome, instituting public 
mechanisms for certification, auditing, and evaluation of automated decision-
making systems produced by private companies for public governance is important. 
Alternatively, if building those systems in-house, making the process as transparent 
to the public as possible in order to facilitate auditing would dramatically improve the 
implementation of those tools.



53

Fairness
 
‘Transparency’ and human supervision may be elements of algorithmic accountability, but 
what exactly are we looking for when these systems are opened up, or when a decision-
maker is asked to account for their decision? As scandal after scandal associated with 
machine learning reveals, the issue is often bias or discrimination. ‘Fairness’ in machine 
learning has thus emerged as a sub-discipline of computer science, focused on exposing 
and limiting bias in algorithmic calculation. The fairness in machine learning paradigm 
grew predominantly out of the US legal environment’s prohibitions on discrimination, 
although prohibitions on the use of sensitive data types in automated profiling in the 
GDPR mean ‘fairness’ is also becoming a global paradigm. 123

‘Fairness’ frames the harm of automated decision-making as discriminatory or 
otherwise unfair evaluation of an individual in an algorithmic decision-making or 
classification system. Unfair discrimination finds its way into automated systems in 
multiple ways,124  and improving the outcomes of automated decision systems, for 
instance, by removing the impact or influence of sensitive or protected data (any 
category you do not want influencing decision outputs, such as race, sexuality, or 
political position), is critically important. 

But what exactly ‘fairness’ requires, or means, is complex. Indeed, both the NSW Police 
STMP program, and the US example of the COMPAS risk analysis tool discussed 
in the Loomis case, demonstrated bias against particular racial groups in their risk 
scores. Those tools, and the opacity of their operation are highly problematic. But the 
discussion amongst researchers that followed Loomis, or more precisely, followed the 
investigation by Pro Publica into the COMPAS tool,125 was interesting for how it also 
highlighted the multiple possible interpretations of ‘fairness’ in statistical applications, 
the impossibility of embedding multiple ideas of fairness concurrently, and that a 
system’s fairness optimisation will necessarily reflect a political agenda. 

Fairness has to be optimised towards one outcome or another. For example, this might 
be approached through ‘predictive parity’ (ratio of true positives to those labelled high-
risk generally), or ‘error rate balance’ (the distribution of false positives and negatives 
for specific groups).126  Commentators rightly point out that the former approach, which 
Northpointe (the vendor of COMPAS) argued indicated their system was fair, may 
reflect the world view of those who have studied actuarial and preventative penology 
and policing, whereas the latter (which Pro Publica argued would be necessary for 
fairness) may reflect a social justice paradigm of idealised outcomes. But these goals 
cannot be implemented concurrently.127

This raises difficult problems in the procurement and specification of automated 
decision systems. Even if an official recognises the necessity of ensuring such 
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systems do not operate in a biased or discriminatory manner, how such a system 
should be optimised is unclear. Simply specifying ‘fair’ or ‘non-discriminatory’ machine 
learning when designing a system is insufficient. To that end, ‘fairness’ research has 
now revealed an entire catalogue of mechanisms for identifying (and sometimes 
correcting) bias and discrimination. There are now somewhere between 15 and 25 
plausible definitions of ‘fairness’ being used, each optimising for different things. Those 
definitions can generally be grouped into three different categories – ‘statistical’, 
‘similarity’, and ‘causal’ based reasoning methods.128 

‘Statistical’ measures describe fairness metrics that can be calculated from 
observational data, such as how a range of features is distributed across a population. 
Statistical fairness measures attempt to equalise the distribution of features across 
that population, but they often mask unfairness towards smaller minority or sub-groups 
within the population that are not identified by the feature being equalised for. These 
measures are therefore only fair for an average member of a protected group. 

‘Similarity’ based approaches analyse the similarity of treatment between two 
individuals. Similarity is measured by a ‘distance metric’ or ‘statistical distance’ between 
the distribution of outcomes for those two individuals. But this is difficult to translate 
into a meaningful notion of fairness because the relationship between that ‘distance’ 
and some tangible fairness criterion is highly abstract. 

Finally, ‘causal reasoning’ fairness systems take unobservable variables into account 
in order to understand the influence of different attributes on each other. The most 
common example is ‘counterfactual fairness’, which involves changing the value of 
any one protected attribute while keeping non-causally-dependent attributes constant 
to examine any influence on the outcome. A system will be counterfactually fair if 
it generates the same outcome in both the ‘real world’ and a ‘counterfactual world’ 
where the individual belonged to a different demographic group.129 But this does not 
address how protected features typically represent structural inequalities that will be 
expressed through the entirety of an individual’s data. 

Most critically, work has not been done to analyse which of these definitions is 
appropriate or useful in different types of decision-making application. This is now 
becoming the next frontier of work in algorithmic accountability, and rigorous attention 
is urgently needed to improve the procurement process. 

These fairness approaches are necessary because the math demonstrates that simply 
removing potentially discriminatory data points will not produce fairer outcomes. In 
fact, eliminating specific data categories may be counter-productive, as the biases 
associated with those social categories linger on elsewhere in the data. That is, when 
the explicitly discriminatory data points are removed, the effects of those protected 
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categories on the system are replicated in other non-protected categories of data. 
Eventually, tracking the effect of discriminatory features through an entire dataset 
becomes an intractable mathematical problem. 

In the end, no purely technical approach can solve every problem of machine learning 
discrimination, and all ‘fairness’ approaches become political because they privilege 
some stakeholders and marginalise others.

Another risk when attempting to make machine learning fairer is not thinking about 
those political questions and simply purchasing off-the-shelf corporate fairness 
products. Fairness tools are being created, standardised, and marketed by large 
tech firms like Google and IBM as ‘fairness solutions’. However, it is not always clear 
what type of fairness these tools measure. Nonetheless, this has not prevented those 
companies from expressing how their systems have ‘solved’ the fairness problem.130 

Off-the-shelf products generate other risks too – they may not always be suitable for an 
application for which they were not specifically designed, despite vendors suggesting 
otherwise. Investigation into the COMPAS tool revealed that although it was being used 
to predict likelihood of re-offence at sentencing, it was actually designed for use at the 
pre-trial phase. It is therefore important to note that validation of a machine learning 
tool in one context does not necessarily translate to another. Even validation in one 
geographic context does not mean validity when used amongst a population situated 
in another geographic area. Different contexts mean different data and different 
outcomes with different impacts on people’s lives.

Unquestionably, these companies have an interest in removing discrimination from 
their machine learning products, as ‘fairer’ machine learning is more legitimate machine 
learning, and eliminating improper discrimination leads to better decision-making. But 
there is a risk that the valuable work of the academic community investigating fairness 
is being co-opted by industrial interests to justify the proliferation of these systems, 
without properly attending to the issues they create. Officials involved in specifying 
these systems should be cautious that any off-the-shelf fairness solution may not 
address the issues that are relevant to that particular application. 

Beyond ‘fair’ calculation, some scholars have turned their attention to other issues for 
building fair systems. For instance, selecting relevant and appropriate data sets to train 
a system is critical. Often the data used to train a system does not sufficiently measure 
the real-world effect that the system is trying to regulate. The calculation mistakes 
associated with the ‘Robodebt’ scandal were consequences of the data input for the 
system (information about income earned over a year period) not reflecting what the 
system was actually trying to measure (money earned through employment while also 
receiving benefits).131 To prevent these issues, predictive systems ought to be open to 
proper scrutiny prior to their deployment. 
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Explainability
 
In much the same way that administrative law requires ‘reasons’ in administrative 
decision-making, the capacity to understand why an automated system has reached 
a particular decision is important for algorithmic accountability and transparency. 
However, the illegibility of machine learning makes this a challenge. While no 
jurisdiction has explicitly legislated this requirement, some have read a ‘right to 
explanation’ into Article 15(1)(h) of the GDPR, even though the term is not actually 
used in that provision. In fact, there is rigorous debate over what that provision truly 
affords, how useful it may be, and whether explanation of machine learning is even 
possible. The law provides that in the case of automated decision-making and profiling, 
individuals should have access to “meaningful information about the logic involved, 
as well as the significance and the envisaged consequences of such [automated] 
processing for the data subject [subject of the decision].” What constitutes ‘logic’ here 
is disputed,132 as is what type of disclosure about that logic would be ‘meaningful’. 

The debate focuses on whether the law requires explanation of system functionality 
– “the logic, significance, envisaged consequences and general functionality of an 
automated decision-making system, eg the system’s requirements specification, 
decision trees, pre-defined models, criteria, and classification structure” – or an 
explanation of specific decisions – “the rationale, reasons, and individual circumstances 
of a specific automated decision, eg the weightings of features, machine-defined 
case-specific decision rules, information about reference or profile groups”.133 Authors 
like Sandra Wachter, Brent Mittelstadt and Luciano Floridi adopt the former position, 
arguing that the GDPR does not grant a right to explanation of the logic, significance, 
and consequences of a specific decision after it has been made. They claim the law 
only requires a general explanation of system functionality. 

On the other hand, authors like Andrew Selbst and Julia Powles argue that when 
you read various provisions of the GDPR together, they do require explanation of 
specific decisions, because ‘meaningfulness’ is tied to the right to contest a decision 
in Article 22(3).134 This approach frames the right to explanation as giving ammunition 
for a contest or appeal rather than simply justifying how a system works. That latter 
interpretation would greatly enhance the utility and significance of the law.

If a ‘right to explanation’ of specific decisions does exist in the GDPR, or is legislated 
in another jurisdiction, there are still questions as to what that explanation should 
communicate. Does explanation mean: disclosures about the specification and design 
of an algorithm; the system’s explicit purpose; the features and weightings the system 
uses; the kind of outputs it generates and how they contribute to a decision; what level 
of human intervention remains or is possible; whether the system has been validated, 
certified or audited, and in what context; whether the system uses a fairness model and 
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what type of model; or anything else? In this context an approach growing in popularity 
is to build machine learning systems capable of explaining themselves. The computer 
science community is taking on board the possibility that machine learning-based 
profiling may need to be explainable to be legally acceptable.135 There is therefore a 
growing effort in computer science to design automated decision-making systems that 
are in some way explainable. This field is called ‘explainable artificial intelligence’ or XAI.

XAI entered the mainstream agenda after a 2016 US Defense Advanced Research 
Projects Agency (DARPA) grant solicitation funded multiple research laboratories to 
work on the problem that the development and effectiveness of machine learning 
technologies will ultimately be limited by their opacity.136 The broader policy goals 
behind XAI are thus to improve machine learning systems, to satisfy any emerging 
legal compliance, and to enhance public trust in the use of those systems.137 There 
are a growing number of XAI models and a great deal of competing theorisations of 
the value, function, and proper expression of computational ‘explanation’. But what 
constitutes explanation is as yet unclear in the computer science community, let 
alone in the broader community that has long contemplated that question, or in the 
communities that would put XAI systems to work in socially operative systems.

Some XAI projects address explanation by attempting to produce more 
comprehensible or intelligible decisions by communicating to users simplified 
approximations of what a system is doing or what the model does. Some argue that 
simplified approximations are insufficient, and that explaining the line of reasoning 
a system engages is also necessary. Others have proposed ‘what’, ‘why’, and ‘how’ 
models (again), noting that reasons are not necessarily explanations unless they 
give insight into the mechanisms at play in any particular decision.138 Some projects 
focus on specific domains like images, and describe explanation as “presenting 
textual or visual artefacts that provide qualitative understanding of the relationship 
between the instance’s components (e.g. words in text, patches in an image) and the 
model’s prediction”.139  A prominent example is the Local Interpretable Model-agnostic 
Explanations system (or LIME), capable of describing which elements of an image 
pushed a classifier to make a particular prediction by identifying elements of the 
image connected with those predictions. Gaining particular popularity however, are 
‘counterfactual’ approaches that account for how a model has behaved in a particular 
context or application, rather than how it functions. 

Finale Doshi-Velez and others have described, for the sake of counterfactual XAI, 
what they understand as the three core elements of ‘explanation’: What were the main 
factors in a decision? Would changing a certain factor have changed the decision? 
And why did two similar-looking cases get different decisions, or vice versa? 140 For 
them, the goal of explanation is to produce after-the-fact analysis of decision output 
rather than exposing how a model actually works.141 In other words, they are primarily 
‘justification’ rather than ‘introspection’ methods. 
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To that end, counterfactual approaches may not be the best approach to accountability 
in governmental decision-making because they do not demonstrate how a particular 
classifier has interpreted and dealt with a particular rule – that is, the rule a contesting 
party might argue the decision-maker has failed to abide by in their decision. Instead, 
counterfactual approaches only probe how a decision-maker might deal with different 
factual scenarios, not how the system interprets the world or the relationship between 
data and rule or policy. Accordingly, while a counterfactual approach may be useful for 
justifying a decision, it may not offer meaningful explainability for contesting automated 
decisions. In other words, if the goal of explanation is to give ammunition for an appeal, a 
piece of software explaining how the system would have computed other input data may 
not be enough to build a persuasive argument that a decision was made improperly. 

Ultimately, each of these systems includes inherent trade-offs, perform better or worse 
in certain situations, provide one type of information at the expense of another, or 
end up being arbitrary when pushed too far.142  When computer scientists generate 
‘interpretable models’, it is important to recognise that ‘interpretable’ in that sense is 
a purely mathematical and quantified concept.143 As Mittelstadt and his co-authors 
rightly note, XAI is more akin to scientific modelling than explanation-giving.144 Indeed, 
research in this field is running up against the reality that the legal conception of 
explanation may not be what technical systems can foreseeably provide.145 

Without arguing for what might be the most appropriate XAI approach, it is suggested 
here that XAI actually risks becoming a harmful approach to accountability. XAI has the 
potential to entrench problematic automated decision-making by narrowing the types 
of reasons that are given for decisions, therefore narrowing the grounds for contesting 
them. Being subjected to automated decisions without understanding how or why that 
decision was made may be problematic; but receiving automated explanations that do 
not provide a premise on which to base an appeal or contest – and simply justify the 
decision – might be worse. 

There is therefore a risk that what ‘explanation’ means for law – a subject long discussed 
in legal theory – may ultimately be reduced to what a computational system is capable of 
explaining about itself, or what the entities that build and commercialise machine learning 
systems, or the institutions that deploy them, may prefer to constitute an explanation. 
In other words, XAI risks ceding to data science the epistemological terrain of what 
constitutes explanatory information.146 If the function of explanation is similar to the 
provision of legal ‘reasons’, then this is a very precarious trajectory.147  The simultaneous 
motivations behind XAI, of legal compliance and enhancing trust in a system, might then 
be contradictory, depending on how that notion of legal compliance is configured. 

Building machine learning systems capable of giving a cogent and meaningful 
explanation for their output is a desirable goal, but it is critical that this development 
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in the technology is not directed to merely justifying its outputs. Explanation must be 
geared towards challenging decisions more than justifying them. It must be situated 
around exposing how an automated system may have used the wrong data; how the 
data used may not represent the totality of the data relevant to the question; how the 
system may have miscalculated or not understood the significance of that data; or how 
the rules, when applied to that data, might not produce the desired outcomes.

Conclusion 
These critiques and warnings about transparency, fairness, and explainability all have a 
similar flavour. If an official specifies for a system to be transparent, fair, or explainable, 
it is important that they understand the limitations of such a specification. That means 
significant resources must be invested in developing the skills necessary to decide 
whether a machine learning system is useful and desirable, and how it might be made as 
accountable and transparent as possible. The ability to write good requests for proposals 
or tender documentation is critical. The capacity to closely review a system after 
implementation and consider its ongoing effectiveness and impacts is also important. 

Political communities need to have discussions about their non-negotiables when 
dealing with vendors – that is, what absolutely must be included and excluded in a 
system and procurement contract. That might be something like retaining ownership 
of data and systematic reporting. It might mean involving universities and community 
organisations, or other stakeholders, to understand the impact of a decision system. 
This is because proper transparency and accountability means more than simply 
knowing what ‘features’ are important in the technical system. It also means inclusion 
of the people who are most likely to be affected by a machine learning system in 
the design and review process. Governments need to build these technical, political 
and organisational skills in simple deployments of machine learning systems in order 
to develop the ability to manage much larger projects, filled with massive-scale 
computation, associated with ‘smart cities’, that may be coming in the near future, with 
more massive impacts on people’s lives.

Without those skills and transparent processes, all the governance standards in the 
world will not lead to good political outcomes, as too much is left to the private sector, 
where motives are not the same as those in government. In that context, transparency 
and accountability are at risk of losing their value. As Gloria Gonzalez Fuster argues 
with respect to algorithmic transparency in the GDPR:

In European data protection law… transparency is fundamentally not about a 
vague, utopic state of objective clarity, but about something else. It is not about 
letting data subjects sneak into the real life of their data and into the algorithms 
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that move them, but about providing individuals with a certain narrative about all 
this processing; a narrative de facto constructed for data subjects on the basis of 
the interests of the data controllers, and adapted to fit a certain idea of the data 
subject’s presumed needs and ability to discern. 148

Fuster describes how transparency might simply deliver to data subjects an account of 
what is being done to their personal data, tailored to a certain idea of what individuals 
might want to hear, and what they can perceive. The point is that transparency can 
become an instrument that distracts us or even actively undermines the capacity to 
meaningfully challenge or bring oversight to these decision-making processes.

In light of these problems, scholars like Frank Pasquale have begun to ask whether 
these computational forms of accountability adequately consider the question of 
‘accountability to whom’. 149 Yarden Katz similarly comments that “If AI runs society, 
then grievances with society’s institutions can get reframed as questions of ‘algorithmic 
accountability.’ This move paves the way for AI experts and entrepreneurs to present 
themselves as the architects of society.”150 Without proper attention to these issues, 
accountability risks becoming part of the feedback mechanism that unthinkingly 
proliferates automated decision-making, without paying attention to its social 
desirability or political consequences. 
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AI IN THE PUBLIC INTEREST

Fang Chen & Jianlong Zhou

Like the steam engine in the first industrial revolution, electricity in the second industrial 
revolution, and electronics and information technology in the third industrial revolution, 
artificial intelligence (AI), which has powerful capabilities in prediction, automation, 
planning, targeting, and personalisation, is claimed to be the driving force of the 
next industrial revolution (Industry 4.0).151 It is transforming our world and our society, 
affecting virtually every aspect of our modern lives. 

AI enables the monitoring of climate change and natural disasters, enhances the 
management of public health and safety, can predict crop output in agriculture,152 and 
automates administration of government services. AI might also be used to prevent 
human bias in criminal justice,153 enable efficient fraud detection (such as in welfare, 
tax, trading), enhance the protection of national security, and in more esoteric fields, AI 
can help discover new galaxies,154 and design new drugs.155

AI can provide benefits across a large range of public interests and deliver 
revolutionary change in both the efficiency and effectiveness of services. AI can 
enhance the quality of human and support better decision making, especially decision 
making in government. 

However, there are many ethical, legal, social and cultural barriers to AI, and its 
applications are not without their costs. AI often requires an enormous amount of 
information to learn, and that information is often personal in nature. Privacy issues are 
becoming increasingly complex in the digital age, and the ethical implications of AI are 
among the community’s top concerns with its proliferation. But while there are many 
privacy considerations with AI, not all are negative. 

In some cases, AI can actually enhance privacy by reducing, if not removing, the need 
for personal information to be collected. This chapter will explore these issues, using 
examples from transport, infrastructure assets, energy and education.
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Smart AI applications affect the quality of life
Many people assume that AI can enable computers to exhibit human-like cognition, and 
that AI is more efficient than humans in various tasks, for example, by having a higher 
accuracy, being faster and working 24 hours a day. Claims about the promise of AI are 
abundant and ever growing in relation to different areas of our lives. These diverse and 
ambitious claims have led to interest in AI in a wide range of industry sectors including 
retail, education, healthcare and others. According to surveys by McKinsey, the leading 
sectors in AI adoption today are mainly high tech and telecommunications, automotive 
and assembly, financial services, resources and utilities, media and entertainment, 
consumer packaged goods, followed by transportation and logistics.156 Theoretically, at 
least, these uses should ultimately help to deliver better quality of life with manageable 
cost of living, a better environment, and easy access of transport for time saving. 

McKinsey produced an analysis of more than 400 use cases of AI, representing $6 
trillion in value across 19 industries and nine business functions, demonstrating the broad 
use and significant economic potential of AI.157 In more than two-thirds of the listed use 
cases, AI was used to improve the performance beyond that provided by other analytics 
techniques. For example, AI is already helping financial institutions augment financial 
planning and investment strategy, and in some cases, AI powered diagnostics systems 
have proven to be more accurate than human doctors in diagnosing serious disease. 

Using AI and data to support better  
decision making
AI may help humans by automating tasks that would take much human power 
or time to deal with. It can also find patterns that are usually difficult to catch by 
humans, allowing insights that might not otherwise be apparent. For example, AI has 
powerful capabilities in coordinating data delivery, extracting data trends, making 
predictions, quantifying uncertainty, checking data consistency, generating new data, 
and suggesting courses of action. Such capabilities can augment human intelligence 
dramatically in tasks and enable decision making processes to be done automatically. 
As a result, AI powered decision making could not only improve decision quality by 
reducing errors and biases that are common with human decisions, but it may also 
decrease the human workload involved in critical decision making. AI has the potential 
to make a revolutionary impact on the way in which humans make decisions. 
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AI and government decision making
The applications of AI in the public sector are already broad and are continuing to grow. 
Today, the sources of information accessible to government is massive, ranging from 
organisation data, program data, service data, health data, data created by Internet of 
Things devices, as well as many others. While any application of AI in the public sector 
must be balanced with careful governance, review and ethical considerations, there are 
several ways AI could be used to improve government operations:

• To streamline or automate high frequency, high workload decisions: AI can 
improve the quality of decisions and reduce the cost of services by automating 
time-consuming, manual bureaucratic processes. Typical examples of such 
decisions include making welfare payments and immigration decisions.

• To make decisions in complex public sector problems: AI may identify leading 
indicators that signal potential problems in public sector applications. For 
example, tax fraud is a serious problem that could be detected by AI, enabling 
government agencies and departments to make informed decisions about its 
enforcement and policy.

• To make strategic decisions: the ability to efficiently process large amounts 
of data from various sources for analyses and prediction allows AI to help 
government make high level strategic decisions for different areas of public 
policy. For example, AI could help government identify which skill sets might be 
required for a particular program, assisting in workforce planning. AI could also 
undertake predictive analytics for the requirements of infrastructure assets in a 
new suburb, helping government to make planning decisions.

There are four areas in particular in which AI has potential to enhance the work of 
government: transport, infrastructure management, energy, and education. 

AI in transport
With growing urbanisation, more and more vehicles will be on our roads, resulting in 
significant transportation issues such as heavier congestion and an increase in serious 
accidents. These transport issues may cause economic and social loss. For example, 
road users in Sydney and Melbourne currently need to allow an average of 50% more 
time to complete their journeys during peak hours than during non-peak times.158 AI 
could use data from different sources such as road cameras, mobile phones, road 
networks, and even social media to set up machine learning models, which could 
revolutionise different aspects of transportation.
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AI is already being used in the prediction and detection of traffic accidents and 
congestion. Traffic simulation is used to simulate the effects of actions that could be 
conducted when traffic accidents or congestion occur. These solutions allow for real-
time monitoring of transport networks and the identification of operational anomalies 
so that transport operators and travellers can make better decisions. For example, AI 
has been used (along with collating traffic data) to reduce congestion and improve the 
scheduling of public transport in some cities.159

In addition, AI can be used to predict the locations and frequencies of traffic accidents 
in order to suggest actions to improve safety. For example, pedestrians and cyclists are 
the most vulnerable road users to serious injuries in a traffic accident. If AI were used 
to predict common paths that pedestrians and cyclists take, it may help in decreasing 
instances of traffic accidents and injuries. With a predicted path of pedestrians or 
cyclists, transport signals – such as speed limit advisories and red/green lights at cross-
roads – can be automatically adapted to control the movement speed and paths of 
vehicles on the road to reduce potential traffic accidents.

With appropriate inputs, AI could also be used to predict future transport requirements 
based on historical transportation volumes, population increases and other factors. 
This could help authorities optimise traffic networks and make informed plans for both 
traffic networks and city planning. 

Autonomous vehicles have the potential to enhance mobility of people who cannot 
drive and dramatically change how we get from one place to another. Self-driving 
trucks and remote-controlled cargo ships could relieve drivers from intensive 
workloads and dangerous work conditions. Autonomous delivery trucks could change 
the way we receive goods, offering faster speeds through optimised paths, potentially 
bringing significant economic and environmental benefits if this is done effectively. 
AI could be used to sense the environment of autonomous vehicles while they are 
in operation and allow vehicles to automatically conduct various operations. These 
functions in self-driving cars, driverless buses, and driverless trains could improve 
traffic safety by automatically sensing risk around them and taking action to minimise 
the risk, resulting in an overall improvement of public safety. For example, computer 
vision and other AI technologies can be used to recognise objects surrounding 
operating vehicles; if a walking human is recognised in front of a vehicle, AI can 
decrease the speed of the vehicle or change lanes to avoid an accident. 

These examples demonstrate the dramatic impact of AI in areas of public safety, 
administration of government services, and productivity.
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AI and infrastructure management
Governments have significant challenges sustaining public infrastructure assets, such 
as water supply networks, roads, and bridges. Asset management strategies generally 
focus on the maintenance, replacement, and rehabilitation of assets in the later 
stages of their service life cycles. An effective implementation of infrastructure asset 
management can not only bring economic benefits to the government, but can also 
minimise potential failures of those assets.

Water supply networks constitute one of the most crucial and valuable urban assets. 
The combination of growing populations and aging pipe networks require water 
utilities to develop advanced risk management strategies in order to maintain their 
distribution systems in a financially viable way.160 Especially in the case of critical water 
mains, risk should be defined based on the potential impact. The network size and 
location are key factors in determining this. For example, the failure of a single trunk 
line connecting distribution areas or a pipe under a major road typically brings severe 
consequences due to service interruptions and negative economic and social impacts, 
such as flooding and traffic disruption.161 From an asset management perspective, there 
are two goals for water pipe management: to minimise unexpected pipe failures by 
prioritising timely renewals, and to avoid replacing a pipe too early before the end of 
its economic life.162 AI can help to predict and identify high-risk pipes before failures. 
If used correctly, it is likely that repairs could be completed with minimal service 
interruption, water loss and negative social and economic impacts. 

In addition to water pipes, AI can also be used for the predictive maintenance of other 
public infrastructure and equipment. For example, road maintenance is one of the key 
responsibilities of government. With appropriate privacy protections, we might use 
mobile network technologies and some of the sensors already present on modern 
vehicles to collect information on the condition of roads in real-time, using data from 
both passengers (such as from their mobile phones) and from vehicles. This may be 
a cost-effective alternative to using expensive special road inspection vehicles that 
are based on radar, high-definition cameras and LiDAR technologies. With the use of 
AI, information on the locations, sizes and types of road defects could be identified, 
analysed, prioritised and sent to road management authorities for appropriate action. 

Traditionally, bridge inspection is conducted in person by professionals at predetermined 
time intervals (based on already developed risk assessment models). This is time-
consuming and expensive. In contrast, different sensors (such as vibration sensors and 
displacement sensors) could be installed on various elements of a bridge to record any 
physical changes to the bridge. AI could analyse the data from these sensors, leading 
to a more reliable and continuous monitoring of the condition of the bridge in real-time. 
For example, the Sydney Harbour Bridge, which was completed in 1932, needs to be 
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inspected regularly. But finding faults along the 1,149-metre long deck and 134-metre high 
steel arch bridge visually is a difficult and time-consuming process. The Commonwealth 
Scientific and Industrial Research Organisation’s (CSIRO) Data61 developed an AI system 
based on predictive analytics to continuously monitor the structural health of the bridge, 
and provide early warnings of problems before the bridge services are affected.163 

Around 2,400 sensors were installed on the bridge to collect information on its condition, 
allowing this intelligent monitoring system to work continuously. 

AI in energy
The provision of adequate, reliable and affordable energy to meet future energy 
consumption needs is one of government’s significant missions. AI can help to achieve 
such an ambitious objective.

With the significant increase in the use of renewable energy generation systems, 
electricity ‘smart grids’ are transitioning from creating intelligent energy distribution and 
flows within the existing grid structure, to using AI to restructure the grid by bringing 
in new, diverse and decentralised energy sources, such as solar and wind power.164 
Technologies such as batteries offer further opportunities for improvements, and 
electric vehicles provide increased demand requirements. This kind of future grid 
would be a complex network with both electrical generation and distribution assets. It 
could be expected to intelligently match supply and demand and operate automatically 
or semi-automatically. A future grid could also measure and predict the needs of 
individual customers, balancing them at different times or for different purposes, and 
then take appropriate actions throughout the network, delivering customised energy 
management solutions. 

The adoption of AI and smart automation can aid the future grid from different 
perspectives:

• AI for matching supply and demand: The modern electricity ecosystem usually 
includes a mix of traditional energy, such as hydropower or thermal power; 
renewables, like solar and wind power; as well as energy storages. However, 
renewable energy sources are usually weather-dependent and therefore highly 
unpredictable, making it a challenge to match demand and supply. AI offers 
solutions to demand management problems by using predictive analytics to 
accurately estimate renewables to balance grids.165

• AI for energy efficiency and reliability: AI can help to improve the economic 
efficiency of energy. For example, AI can monitor and optimise the turbine 
parameters of wind power to increase its energy production. Turbines with less 
performance can be detected by monitoring and comparing the generation of 
other turbines in a wind farm. Parameters of the underperforming turbine, such 



69

as the blade’s direction relative to the wind direction, can then be optimised 
based on other turbines in the wind farm. AI can also automatically detect 
anomalies and faults in electrical grids by monitoring various parameters by 
way of smart meters in businesses and homes. Item sets of events that may be 
anomalous can be identified based on their patterns of appearance in the smart 
metre data stream. 

• AI and the consumer: By monitoring the energy consumption behaviour of 
individuals and businesses, AI can offer solutions to tailor customers’ energy 
consumption and reduce costs by giving suggestions on how and where 
customers can save energy. Customers can also benefit from AI in the supplier 
selection. Although market reform for improved competition would be needed 
to facilitate it, it might be possible for an AI to learn a customer’s energy 
consumption and generation profile and then match the most suitable offers 
from the market and automatically switch suppliers.

AI could help provide adequate, reliable and affordable energy by using predictive 
analytics to accurately match demand and supply, optimise parameters of renewable 
energy for energy efficiency, detect anomalies automatically, and provide customised 
energy solutions for individual consumers. These functions combined could maximise 
the use of renewable energy and encourage the efficient use of energy, resulting in 
benefits for the environment.

AI in education
Education is, and will always be, a foundational part of humanity. Regardless of age, we 
are constantly developing new skills and understandings. AI technologies are well suited 
to achieving crucial education objectives, such as enhancing teaching efficiency and 
effectiveness, providing lifelong education for all, and developing personalised learning.

Conventional classroom teaching delivers one lesson to the entire class without 
considering individual differences in learning, which not only makes individuals 
frustrated when they cannot follow the pace of teaching, but also wastes the time 
of students who have already grasped the concepts. AI could improve adaptive 
learning and personalised teaching by identifying factors or indicators related to 
learning efficiency. Those factors or indicators are derived from students’ behavioural, 
physiological information or even learning materials. For example, in mathematics, the 
cognitive load level of a student during learning, which is related to the difficulty level 
of mathematic questions, could be estimated through the examination of the student’s 
behavioural features such as writing speed, orientation of the pen, and pressure of 
the pen tip.166 When the cognitive load level of the student is too high or too low, 
the difficulty level of mathematic questions could be adjusted in order to keep the 
cognitive load to an appropriate level to maximise the learning performance of the 
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student. As a result, the learning could be adaptive based on students’ responses, with 
a feedback loop for better learning performance.

AI can also complement the skills of classroom teachers. Teachers and AIs have 
complementary strengths and abilities. A teacher may have strengths in high level 
guidance and creativity, while AI may have strengths in analysing students’ responses 
to learning materials. It is expected that AI can help fill needs gaps in learning and 
teaching that schools and teachers cannot provide.167 For example, AI could provide 
personalised and streamlined teaching to students by analysing each student’s 
responses and performance during learning, allowing teachers to focus on providing 
unique human capabilities of high-level guidance, high-order thinking and creativity.

The potential for AI to benefit the education sector also extends outside of the 
traditional classroom setting. Tutoring outside the classroom is often limited because 
teachers are not always available. However, students could receive additional support 
from AI tutors at any time, without being limited by locations (whether students are in 
urban areas or in remote rural areas). Most importantly, AI can also provide feedback to 
students on their success in the subject.

If implemented, AI will almost certainly shift the role of teachers in education. Because 
AI can help students with adaptive and personalised learning, and provide tutoring 
at any time, teachers will supplement AI-based learning, assisting students who are 
struggling as well as providing mentoring and hands-on coaching experiences for 
students – value-adding tasks that are uniquely suited to human beings.168

With the use of AI, students may not only have efficient learning based on their own 
capabilities but also benefit from lifelong learning. Most importantly, if made widely 
available, AI may also help achieve equity of learning for people, no matter their age, 
where they are from, or their profession. All these qualities of AI are of use for the 
advancement of society. 

AI and privacy 
In many cases, the use of AI will need to be balanced with other considerations, such 
as ethics and privacy. While we have so far demonstrated the far-reaching benefits that 
AI can have for the public sector and the community, governments are held to a high 
standard of accountability when it comes to the way they use personal information.  
The use of AI bears no exception, and privacy must be a key element in the design  
of AI systems. 
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There is no single or conclusive definition of privacy. It encompasses many connected 
but different ideas, including secrecy, confidentiality, freedom from surveillance, and 
having control over one’s own personal information. Privacy is not a fixed concept – it 
can mean different things to different people, and individuals will experience privacy in 
varied ways. Often, one’s past experiences will influence their relationship with privacy, 
and the extent to which they value this human right.iv Information privacy relates to 
an individual’s ability to determine for themselves when, how, and for what purpose 
their personal information is handled by the organisations with whom they transact. 
Ultimately, it is about allowing people to maintain their individuality and autonomy.

Numerous countries, including Australia, have laws to protect information privacy,v 
and in many cases these laws are technology-neutral, meaning they apply to personal 
information regardless of the form it takes, or how it is collected, stored or used. 
When personal information is not protected, it can cause real harm, be that financial, 
reputational, or even physical. When privacy is invaded on large scales, it can lead to 
a ‘chilling effect’, deterring people from exercising their freedom of expression, stifling 
discourse that is necessary for democracies to function. 

AI usually requires huge volumes of data in order to learn and make decisions. 
Because of such heavy demand for data – in many cases data containing personal 
information – privacy is one of the most important issues in the design and use of 
AI. Both AI technology developers and users need to consider how they can provide 
proactive protection to individuals in the face of AI technologies.

AI compromises privacy
The large amounts of data that enable AI to work can pose significant privacy risks, 
and these can be exacerbated if AI is permitted to perform tasks automatically without 
human intervention. Some examples are detailed below.

• Data collection: in a typical day, a person will get up in the morning, catch a 
bus or train to work, surf webpages on their devices, go to a restaurant to have 
a lunch, go to the supermarket to shop, and so on. All these activities generate 
data and can be recorded by mobile devices or other systems. People are 
mostly unaware of how much personal information their devices and systems 
generate, process, or share, and in many cases the consent mechanisms 

iv The human right to privacy is enshrined in many instruments around the world, including the Universal 
Declaration of Human Rights and the International Covenant on Civil and Political Rights. In Victoria, a right to 
privacy is provided for by the Charter of Human Rights and Responsibilities Act 2006.
v Australia has a web of privacy laws, including the Commonwealth Privacy Act 1988, and state and territory-
specific privacy laws (although not all states have privacy laws). In Victoria, the Privacy and Data Protection 
Act 2014 promotes information privacy.
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involved in the collection of the data are not well-developed. As more advanced 
technologies and devices are introduced, more personal information will be 
exposed to AI without the knowledge or agreement of individuals, increasing 
privacy concerns.

• Identification and tracking: AI has the capability to identify and track individuals 
across different data sources, which can result in shadow profiles of individuals. 
Even if personal information is de-identified, AI can relatively easily re-identify 
the data based on inferences from different data sources. For example, 
researchers have developed a way, based on convolutional neural networks,  
to identify and track individual animals by using the animal’s movements,  
without facial recognition.169 Gait analysis of humans is already in use in some 
limited circumstances. Such results could eventually be applied to public 
surveillance of humans by using an individual’s movement, which creates 
significant privacy concerns.

• Facial and speech identification: face and voice are two typical signatures that 
we notice or hear to recognise someone. Successful business products based 
on face and voice recognition have been developed, and voice recognition in 
particular is already in widespread use. Many financial service providers are 
using facial biometrics for authenticating transactions, for example, some banks 
in China provide ATM services such as withdrawing cash by scanning the face.170 
Facial biometrics are also used for border entry and exit in many international 
airports, including Australian airports.171 Such identification helps to improve the 
user experience from a consumer’s perspective (such as easy authentication 
and fast check-in services) and the performance of authority management for 
public good. However, the technology also means that people’s biometric data 
is held by the government or other authorities, with the potential that data may 
then be used for other purposes, leading to the erosion of privacy. Biometric 
identification applications such as these require very strict privacy management; 
individuals cannot change their faces, as they can with passwords.

AI enhances privacy
AI techniques pose a threat to privacy, as presented in the previous section. Just as 
one coin has two sides, AI can also enhance privacy through innovative methods, such 
as those described below.172

• Reducing the need for training data: AI requires large amounts of data, which 
can often be personal information, for training machine learning models. 
Fortunately, different techniques have been developed for generating synthetic 
data, which may reduce the need for training data associated with real people, 
decreasing the privacy-related risks. Using a generative adversarial network is 
one of the popular methods for generating synthetic data. This meets the needs 
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of having a large amount of data for the training of machine learning models, 
without the use of data containing real personal information.

• Upholding data protection without reducing the basic dataset: many AI 
models are trained using personal information, which can be sensitive. Ideally, 
to address privacy concerns, machine learning models should encode general 
patterns rather than facts about specific training examples. Other AI techniques 
can also help to overcome privacy concerns. For example, Google published 
a library named ‘TensorFlow Privacy’ for its TensorFlow machine learning 
framework, intended to make it easier for developers to train AI models with 
strong privacy guarantees.173 It is based on the principle of differential privacy, a 
statistical technique that aims to maximise accuracy while balancing the users’ 
privacy, and can prevent the memorisation of rare details.174

• Enhancing knowledge share without centralised training data: personal 
information is usually located on isolated ‘islands’ such as mobile phones, private 
cloud storage, private photo albums, and so on. While standard AI models are 
usually trained with centralised training data, which may cause privacy concerns, 
new machine learning techniques have been developed to relieve this problem. 
‘Federated’ machine learning allows the training of models to be distributed 
among users, meaning that training is done directly on personal devices such as 
phones, so that personal information does not need to leave its ‘island’.175

• Avoiding the ‘black box’ issue: AI is a ‘black box’ for general users, in that 
it accepts inputs and generates outputs, but does not disclose its internal 
working. Users do not know how the inputs are processed and how the outputs 
are generated. This is a challenge for both people who use AI systems and 
those whose data is used by systems. This can result in privacy concerns, as 
a common principle in privacy law is that organisations are expected to be 
transparent about how they use personal information. Explainable AI (XAI) is a 
new approach that tries to make the machine learning process understandable 
by giving explanations for AI outcomes. XAI attempts to explain how the training 
data is processed by a decision tree algorithm, to get outputs that let users 
understand that their data is processed in a way that does not – among other 
things – compromise privacy. 
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Barriers to AI
While we continuously find ourselves coming across appealing AI-based systems that 
seem to work (or have worked) surprisingly well in practical scenarios, AI is currently 
still facing significant barriers in user acceptance. 

Human trust in AI
A major barrier to AI is the human trust in AI technologies and AI-based solutions.176 

In their paper ‘Trust in automation: Designing for appropriate reliance,’ John Lee and 
Katrina See of the University of Iowa defined trust as “the attitude that an agent will 
help achieve an individual’s goals in a situation characterized by uncertainty and 
vulnerability”.177 This definition shows that uncertainty is tightly coupled with trust. 
Uncertainty is a common phenomenon in AI technologies and machine learning, which 
can be found in every stage of learning, from input data and its pre-processing, to 
algorithm design, feature selection and model evaluation. In addition to uncertainty, the 
trust issues in AI are furthered by the black box nature of machine learning techniques, 
where users are unaware of what is going on inside a machine learning algorithm and 
how the prediction results are based on input data. Further investment is required to 
make AI explainable and transparent for trustworthy decisions driven by AI.

Data issues in AI
An abundance of high-quality data is critical for AI training systems. Poor data quality, 
such as sparse or missing data, is a key obstacle to the widespread adoption and high 
performance of AI. The saying ‘garbage-in, garbage-out’ has plagued analytics and 
decision making for generations, and this is especially an issue in AI. Data availability is 
also a big issue in some special areas for training AI with high accuracy; if limited data 
is available for model training, the overall AI model performance will be decreased, 
exacerbating risks of overfitting and low accuracy. 

Government regulation of AI
With the continuous growth of AI uses, governments are increasingly expected to 
legislate or regulate the adoption of AI and use of data. The ethical implications of AI 
use in government is also a major focus of concern.178 CSIRO’s Data61 has developed 
a discussion paper to inform Australia’s ethics framework for AI.179 Similar frameworks 
have also been developed in other jurisdictions. For example, New York has reviewed 
key systems used by government agencies for accountability and fairness, and 
Germany has developed government-led advice on the ethics of automated vehicles. 
The regulation of AI is discussed in greater detail in the final chapter of this book.
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Other barriers to AI
Aside from the issues met by AI as mentioned above, there are also other barriers 
to adoption and use of AI. The automation driven by AI has an important impact on 
both the future of jobs, and skills potentially required to design and implement AI. 
Employees are afraid of losing their jobs to automation, while employers are also 
worrying about the difficulty of finding people whose skills and capabilities are best 
matched to AI-driven work. 

Additionally, the adoption of AI tends to be concentrated in relatively digitised 
industries that have access to massive amounts of data collected by their own 
infrastructures. Take Amazon, Alibaba, and Facebook, for example. Broader adoption 
of AI in different domains and especially in smaller firms could be important to drive 
improvements in product quality, performance, and markets. The barriers to smaller 
organisations adopting AI mainly lie in the lack of data availability, and a lack of 
appropriately skilled individuals working within these sectors.
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Conclusion
The adoption of AI within government is still relatively low. Possible reasons for this 
could be ethical concerns such as fairness, transparency, explainability, accountability, 
and privacy, amongst the other possibilities noted throughout this chapter. For example, 
can AI be prevented from conscious or unconscious bias based on historical data? Can 
users accept decisions based on logic from black box deep-learning models? 

While the strong capabilities of AI in prediction, automation, planning, targeting, 
and personalisation could deliver a revolutionary change in both the efficiency and 
effectiveness of government services, the adoption of AI within government is not 
assured and will need further work before it can succeed.

As we have shown, AI has powerful capabilities in prediction, automation, planning, 
targeting, and personalisation. But more attention needs to be paid to ethics and legal 
issues as well as social concerns related to AI. Government will play a central role in 
setting up ethical frameworks and policies to relieve these concerns and balance them 
against the public interest benefits of AI.
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ALGORITHMS, NEURAL 
NETWORKS AND OTHER 
MACHINE LEARNING 
TECHNIQUES

Richard Nock

It is hard to describe just how successful advances in machine learning have been over 
the past years, the field has reached a point where people refer to what is happening 
as a ‘Cambrian explosion’ of machine learning.180 The geologic hyperbole of machine 
learning has been supported by a wide spectrum of specialists, from market analysts, 
to CEOs of major tech companies, and even high-profile machine learning researchers 
themselves.181

The metaphor is interesting for its implications: if we subscribe to it, then we imply 
that (i) there was a ‘before’, (ii) there is a reason for this Cambrian explosion and 
most importantly, (iii) there will be an ‘after’. The earth’s Cambrian explosion radically 
changed the planet forever. What should we expect for machine learning?

In this chapter, I will describe those three eras of machine learning in three parts, 
admitting the partially speculative nature of the third one.

The birth and motives for machine learning
Leslie Valiant, founder of modern supervised  
machine learning
The field of machine learning was born with computers as theorised by Alan Turing. 
The concept of a machine that could automate calculus was soon associated with the 
idea that it could be used to simulate intelligence.182

Statisticians developed the predictive power of data over decades, but it was only after 
Leslie Valiant in the 1980s, that different pieces could be assembled in a theory mixing 
both the computational machine and the mathematics of prediction.183 Valiant’s theory 
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was intuitive: a machine that learns would use an algorithm, a program, taking labelled 
observations as input and returning a classifier. This classifier would encode the way to 
predict the label of an observation.

How might we make the difference between good and bad classifiers? It seems 
reasonable to require that classification has to be accurate on the set of labelled 
observations it was trained from. Valiant’s model adjusted this constraint in a more 
interesting direction, one dealing with generalisation ability: the classifier has to be 
accurate on the whole domain from which the training sample was sampled, with  
high probability.

The difference is subtle but fundamental: if the classifier we get predicts whether the 
profile of a job applicant (an observation) is a good one for an interview (the class), then 
we will want this classifier to be as accurate as possible on all applicants, not just the 
ones that we had in the database that was used to train the classifier. Because it seems 
unreasonable to require good generalisation systematically (our training sample may 
be poorly representative of the whole domain), we just require good generalisation 
with sufficient probability.

Historically, classifiers were simple: in one of his seminal works, Valiant was just 
considering simple sets of ‘if-then’ rules, remarking that humans tend to express  
their ideas using simple symbolic concepts: if the polygon has three edges, then it 
is a triangle. 

Valiant’s model made the assumption that the source of randomness in the data set 
being analysed does not change. This was reasonable at the time it was made, but it 
would have implications later when new methods of machine learning became available.

Valiant’s model captured the essence of supervised learning: the training sample 
contains an observation whose label is given to the machine.

To explain this by example, let us elaborate on our introductory example above and look 
at machine learning in the context of a hypothetical recruitment process. Observations 
could be the description of first round job applicants to a company, which might have 
been collected by a standard questionnaire or populated from resumes: age; gender; 
marital status; postcode; activity; diplomas; past experience; current salary; and any 
other variable that could be easy to collect. Many of these observations would come 
from employees of the company, for which it therefore had work history and, in 
particular, a record as to whether this work history depicted a good fit for the job or not. 

A supervised learning algorithm would then take this labelled dataset as input and 
output a classifier to decide whether the answers to the questionnaire describe an 
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applicant potentially of good profile for a first interview. Instead of a binary answer, we 
could also ask the machine to predict a number, say between 0 and 10, to represent in 
a more precise way, the goodness-of-fit of the candidate – 0 denoting a poor fit and 10 
a perfect fit.

One might imagine that a system that would be good at classifying candidates for a first 
round of selection could potentially just replace a hiring panel for a second round of 
selection, because after all, the task would also be a supervised learning problem, the 
outcome of which would now be to make an offer or decline (and eventually quantify 
the offer). The input for this stage would be significantly more complex because it 
would consider candidates’ feedback from the interview, not from their resumes as 
in the first step. Instead of asking basic questions about age, gender and the like, 
candidates might, for example, face Rorschach inkblot tests during their interview, for 
which they would have to give a description. They could be asked to draw a figure on 
a particular topic, draw a person standing in the rain, or answer technical questions 
about the job for which they are applying. 

All this could easily be performed automatically; the candidate interacting with 
the machine using a simple device like a tablet. All the data stored would then be 
processed by a model more complex than the one in the first round of applications. 
The business has a history of hiring, and therefore a history of who was successful (or 
not) in their job inside the company. This process would represent in fine the exact 
same kind of supervised learning problem as the one used in the first round – predict 
whether a given profile is going to be successful in the job.

There is obviously a huge difference in the inputs to the model – Rorschach figures, 
drawings, and free-form texts are more complex in nature than a resume, which is 
(more often than not) subject to formatting designed to be immediately appealing to a 
department of human resources.

Two standard frameworks for machine learning: 
supervised and unsupervised
For the moment, let us just step back in the process to our first application round. 
Simple if-then rules were not necessarily the standard: at the end of the 20th century, 
decision trees were very popular, and are still popular today because they happen to 
be relatively simple for a machine to learn, and are easy to understand by humans. In 
the case of our interview example, a simple decision tree that could be used to decide 
to proceed further with an applicant is given in Figure 2. Interpreting the tree is very 
simple, and even transcribing it in sets of if-then rules is straightforward: in the case 
of Figure 2, the tree gives us three mutually exclusive rules, each of which proceeds 
from the root test of the tree on gender, to a leaf deciding the interview. For example, 
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reading from the top (root) of the tree, we get the rule: If gender is male and education 
is at a lower level than PhD, then we do not proceed.

Starting from this simple example, let us focus on the types of problems on which the 
whole field of machine learning has been created.

Figure 2 
 
A simple decision tree to predict whether or not to interview a person, here based on 
two variables. Classification proceeds from the topmost test, which here questions 
the gender and then, if the applicant is male, questions his education. Essentially, only 
male candidates with a PhD would be recommended for interview by such a decision 
tree.

Supervised learning has always been an important component of machine learning 
– and is still a key component of the field. Another method is called unsupervised 
learning. In the kinds of cases for which unsupervised learning is utilised, we do not 
have labels, so the task is not so much to predict a class, but rather to organise the 
data according to patterns that the machine is left to find, giving it an objective that is 
in general very loose compared to supervised learning. One popular way to carry out 
unsupervised learning is to divide the data into a fixed number of clusters. To return to 
our interview example, the department of human resources of the company might just 
want to split a large set of resumes into a number of subsets matching the number of 
human resource employees who will be looking at the resumes; it would then make 
sense to ask the machine to make those subsets as homogeneous as possible so that 
each human employee really compares apples with apples, for whatever this notion 
might mean. In this example, the company might just leave it up to the machine to 
decide how to construct those homogenous subsets.
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Beyond the standard frameworks 
Supervised and unsupervised learning have been the foundation of the field of machine 
learning and they are still driving the field today. While both make sense as methods to 
be used in the example of hiring people, they were, even back in the 1980s and 1990s, 
not the only frameworks people were interested in. Early on it became apparent that a 
host of variations were necessary to capture the needs of many applications that were 
not fitting exactly into the supervised versus unsupervised picture.

One such important case related to supervised learning is on-line learning. In our hiring 
example, supervised learning is a batch operation; we can have a huge number of 
resumes and ask the machine to train a model that is going to be used over potentially 
a very long time. We might retrain a model after a number of new candidates get into 
the system to refresh it, make it fit to the current market and new profiles better, but it 
would clearly make little sense to retrain the model from scratch after each update to 
the database, after each resume has been submitted to the company.

This is exactly what matters in on-line learning: suppose our database consists of past 
history of a portfolio of goods alongside their returns over decades, for example using 
the Standard & Poor’s 500 index. In this case, it would clearly be a terrible mistake to 
train a model to decide whether a stock is going to go up or not in a short horizon, and 
then leave it to decide allocations for a long period of time without any update to the 
model. In on-line learning, the model has to be updated after each update to the input: 
we update our portfolio or the predictions after each market update.

In the 1980s, we did not have the constraints imposed today by high-frequency trading, 
but the framework of on-line learning was already elaborated in the context of machine 
learning and under the scrutiny of researchers.

In the case of unsupervised learning, as applied to our recruiting example, we might 
imagine a further problem: that the company would like to do more than just organise 
its complete database of resumes. Maybe there is that candidate in the database, 
this person is different from all others, and their profile would be a perfect fit for an 
unusual kind of job. Isolating such an outlier is the purpose of outlier detection, which is 
arguably different from general purpose unsupervised learning. This refers to a popular 
set of techniques born in the 1980s and 1990s, named anomaly detection, because 
what we are looking for is the part of data that clearly departs from the mainstream 
sample, either denoting fraud (for example in credit card transactions, or votes), severe 
weather patterns (climate analysis), or intrusion in a network (hacking).
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Reinforcement learning and the origin  
of ‘machine learning’
On-line learning is an important model of learning because it puts the machine in 
an environment which is susceptible to feedback, to which it has to react, update its 
model, make it more accurate, and better fit to the objective.

It may be sufficient to deal with simple models of interactions as in our (over)simplified 
portfolio selection model; it is, however, way too simple if the machine is supposed to 
receive much more complex forms of interaction from the outside world, as would be 
the case of an autonomous robot wandering an office for its surveillance, to clean it, 
or to distribute mail to humans. When the machine is interacting with an environment 
and needs to figure out a complex policy, not just a simple model, to maximise rewards 
in interaction with the environment, the design of the machine learning algorithms 
belongs to another field, reinforcement learning. The robot may just start its task by 
knowing little of the best strategies available; we are going to ask the machine to learn 
those strategies. For example, in a hot-desk or flex-space organisation, the machine 
could have to learn to adapt to day-to-day changes of the floor plan occupancy for best 
cleaning, or optimal surveillance.

Interestingly, reinforcement learning did not meet with early fame in the robotic 
domain, but in a domain that inspired a whole field of artificial intelligence: board 
games. This domain is at intermediate complexity level, certainly not as simple as the 
database of our hiring company and not as complicated as for our office robot. 

The case of board games is interesting because it sparked the very first allusion to a 
general definition of machine learning. In the late fifties, artificial intelligence pioneer 
Arthur Samuel wrote, in the abstract of his paper on making a program that learns to 
play Checkers, that the objective was: “a computer can be programmed so that it will 
learn to play a better game of Checkers than can be played by the person who wrote 
the program”.184

Later, a broader definition emerged, which can be summarised as the ability of a 
computer to learn how to solve a given task from past experience. In his seminal paper, 
Samuel developed search algorithms that bypassed the combinatorial difficulty of 
the game by locally estimating a score function used to prune the search for the best 
moves,vi instead of trying to achieve the impossible task of computing all possible plays 
until the end of the game – a task that could only be completed in the 21st century after 
almost two decades of number crunching.185

vi This could be the number of pieces of the player left on the board after a limited series of rounds of play, or 
more complex functions as in Samuel’s original article.
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Samuel’s approach was purely algorithmic: for a human, the difficulty of calculating 
winning options in a board game stems from the impossibility of calculating all possible 
combinations of plays in order to pick the best. However, the computer sees the 
complete state of the world in which it operates. Unlike a game like Poker, where the 
state of the game is partially hidden for each player, a board game operates on what is 
called perfect information. In this sense, it is a long way from the hiring company in our 
recruitment example, whose objective is to also come up with a model that is going to 
be accurate on unseen data, because in the recruiting case, the impossibility resides 
in the unavailability of the resume information of all possible candidates on the planet, 
as well as for their potential fit to the job at hand. If such a complete set of information 
were available, it would be much easier for the company to find the best hire, all the 
more as the maximal number of applicants to the job would still be billions of times 
smaller than the number of possible board positions in Checkers.

Figure 3 
 
In reinforcement learning (simplified picture), the machine perceives the state of its 
environment and receives rewards from its own actions. The goal is to learn a policy, 
mapping states to actions in such a way that rewards are maximised through a 
sequence of interactions.
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Through these examples of problems that early machine learning researchers have 
focused on, we can better understand the early preoccupations of formal learning 
models: manage the potentially huge number of possibilities and come up with a 
solution to the problem within a reasonable amount of time; in general, a model. This 
model is going to be as good as possible given the uncertainty coming from unseen 
data. To be more rigorous, we could make the convenient assumption that the data we 
have has been randomly sampled and that this source of randomness never changes; 
our outlier candidate will always be an outlier, and the reason why we have come 
to observe him is independent of the observation of any other candidate. The 20th 
century history of machine learning has been deeply influenced by this ‘static’ vision of 
learning, which is in the foundations of Valiant’s model, a model that contributed to his 
winning the ‘Nobel of computer science’ in 2010, the ACM Turing Award.

One step further: Deep Blue
The (board)game between humans and the machine that started with Samuel’s 
Checkers example became famous in a subsequent step that achieved spectacular 
results in learning in highly complex environments: custom hardware. IBM’s Deep Blue 
was focused more on how to get the machines to operate on proper hardware than 
on improving the state of the art in algorithmic decision making. In Deep Blue, the 
‘machine learning’ part was reduced to a core not so different from Samuel’s search 
ideas, but the hardware was custom and pushed to its limits to implement the search in 
parallel and with much better efficiency, with the objective to beat the world champion 
of that time, Garry Kasparov. In the Deep Blue story, an official hallmark of modern 
machine learning was carved; it was not sufficient anymore for the machine to beat 
its programmer, as in Samuel’s paper – the machine needed to display superhuman 
capacity in solving its problem. While it was clearly not Samuel’s objective, a team of 
Canadian researchers in the 1980s took over the objective of making a machine the 
world champion of Checkers, and was later recognised as achieving a first in the genre.

Let us return however to consider reinforcement learning, to unveil one of its core 
challenges. Samuel pioneered some of the early techniques of storing the past and 
trying to generalise from this past to forecast the future possibilities for the game.186 
In the more general setting, even if just for a more complex game like the ones we 
have seen since the advent of personal video gaming systems, the machine needs to 
be in constant balance between two competing objectives: explore the environment 
or exploit its current strategy. In the former case, the machine gets to know its 
environment better, but may lose rewards by making suboptimal choices. In the latter 
case, the machine uses its current model to take an action that supposedly is going to 
give sufficient reward given its past actions, but it may miss the discovery of a particular 
feature of the environment that could have led to even greater rewards.
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Very often, the game used to display this dilemma is Bandits (slot machines). Imagine 
we built a machine to play. The machine is in a casino, facing a set of different bandits, 
with an objective to earn the largest amount of money by repeatedly choosing a 
bandit to pull its arm. Exploration, in this example, is the ability to test different bandit 
machines and exploitation is the ability to stick to the machine that has given the 
largest amount of money so far.

Lightweight summary
Ignoring subsidiary issues like on-line learning or anomaly detection, there are common 
elements in dissimilar methods such as supervised learning, unsupervised learning, 
and reinforcement learning.

1. The inputs are of the same kind: data which encodes the knowledge of the past; 
the current state of the machine’s environment; and eventually the rewards, 
mistakes or failure achieved by the machine.

2. Learning requires the machine to be fast in its computations and accurate in its 
decisions, whether they are classifying a person as hireable, a move as winning, 
or a candidate as having a specific profile.

3. More importantly, learning requires the machine to learn parameters about the 
world.vii More often than not, it consists of a model, which is just meant to be a 
representation of its current knowledge about the task at hand. This can be a 
set of numbers representing how worthwhile a move in Checkers might be (the 
higher, the better), or a decision tree capturing the essence of a good or bad 
hire. In all these cases, the numbers are not encoded by the person who writes 
the program but are fitted to the model by the machine. The decision tree is not 
given to the machine; the machine is tasked to find it.

4. There is obviously a catch in item 3 above. Leaving the machine to wander 
around without giving it a goal would surely result in something barely better 
than a random prediction, and we would end up with a potentially very 
expensive unbiased coin. In fact, in absolutely all these cases – all these 
examples, all these domains of machine learning – the programmer of the 

vii Interestingly, some machine learning techniques are exceptionally lazy; they do not learn anything. In 
supervised learning, this is the case for one of the oldest ‘algorithms’ which would, for example, classify a 
candidate as good to hire by just looking at the closest known profile in the history database and attributing 
the same score to the unknown candidate as that of the known one in the database. Such a rule is called 
the nearest neighbour rule and was born in the early 1950s (see Fix, E. & Hodges, J. L. (1951). ‘Discriminatory 
analysis, non-parametric discrimination’, Report 4, Project 21-49-004). One might think that such a strategy 
is exceptionally poor if the dataset at hand is small — imagine our candidate database contains a single 
labelled observation: every new resume would just be classified in the same way. What is, however, totally 
counter-intuitive, is that this simple rule becomes extremely competitive as the dataset size grows, leaving us 
with the task to find a way to efficiently store and query this potentially huge database (hint: almost nobody 
would in fact do that.)
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software or designer of the algorithm always starts with an objective function 
that encodes the quality of any potential solution to the problem, without ever 
explicitly giving the best one to the machine. There is no exception to this rule 
in machine learning; it is the goal of the machine to figure out how to get a good 
model, a good prediction, a good output with respect to this objective function. 
The design of this objective can be very intuitive and simple; we could just ask 
the machine that learns our decision tree to minimise the errors its learned 
tree makes. The objective function is then simply the error proportion on the 
training data. Our machine exploring bandit arms in its casino could be required 
to maximise the dollar amount of its total play. A subtler objective could be to 
require the machine strategy to come up close to the best possible strategy, 
since the dollar amount does not in fact reflect the difficulty of the task at hand 
in the machine’s environment (maybe the bandits work purely randomly in one 
casino and are completely rigged in another one).

The missing piece of the machine learning framework
There is also a catch in item 4 above, but subtler: giving the machine an objective 
function is typically not enough to have a workable solution to our problem. In general, 
one has to give it the basics of how to make the best of the objective function, to 
determine how to optimise it. Consider the example of a child to whom we give a metal 
detector with the objective to find coins and other useful metals lost on a beach. The 
objective function is obviously a mix of fun and to maximise money, but the task would 
not begin without us explaining how the metal detector works and guiding the child on 
the best places where such target objects could be hidden and how to properly reach 
them, eventually concluding with some hints. The child would then be left with its own 
defined model of the beach, and progressively learn the best way to manipulate the 
detector, and eventually the best or worst places to find interesting metals.

It is the same for any learning algorithms: we would indicate to our algorithm to build a 
decision tree from scratch and make it grow until it properly fits the data.

The algorithmic and statistical part of machine learning was augmented by a third 
field of mathematics which would later prove instrumental in getting the best training 
algorithms even for very complex models: optimisation. Such techniques typically just 
give local strategies to the machine on how to make a better model from its current 
one, leaving it to the computational power of the machine to then build the complete 
model from the repeated application of this basic ‘hint’.

Towards more complex models
In the 1980s a paper was published by David E. Rumelhart, Geoffrey Hinton and Ronald 
J. Williams. Titled ‘Learning representations by back-propagating errors’, it identified 
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useful methods of training models that mimic the neural networks in the brain.187 It was 
recognised three decades later as foundational for the whole field of computer science 
through the ACM Turing Award in 2019.188

In the 1990s, there would have been another common element in all the examples 
above: the model learned was, in the worst case, relatively simple to understand, and 
based on data that was simple to represent. It is probably obvious by now for decision 
trees or simple if-then rules. It would also have been the case for Checkers — we 
just need to store an 8 x 8 array with each value specifying one of three possible 
values (empty, black or white). It would also have been the case for our hypothetical 
databases of resumes, each of which probably reduced to a list of important variables, 
such as gender, age and education, with specific values for each of them. While the 
calculations involved in modelling outcomes were often beyond the capability of 
people to do themselves, the outcomes were interpretable after they were derived – 
we could understand how the models were obtained.

During this period, other work pushed the boundaries of the field, analysing much 
more complex data, typically text, sound or images. In several notable examples, 
researchers wanted to teach computers how to recognise objects in images. This was 
computer vision, which became a focus for automation of classification. The state of the 
art proceeded in two steps, including – in the first step – the automatic extraction of 
features from the image, features that would then be used to train a classifier in pretty 
much the same way as for any other classification problem.

The top image in Figure 4 presents a very schematic view of the overall recipe. 
Researchers circumvented the complexity of the data by guiding the machine towards 
working on carefully engineered and simple features that could be extracted from the 
image. Such an approach may be fine when no other proposal exists on the table, but 
it contains a pitfall: engineered features inevitably contain human bias. We impose on 
the machine our own understanding of the domain at hand – for example, what part of 
an image we think makes an ‘A’ look like an ‘A’ – which can be highly suboptimal and 
force the machine to learn models in the subsequent stage that are not as good as 
they could be.

The question to be asked then is whether it is possible to dispense with the human 
part in the task at hand and let the machine figure out its own way to learn not just how 
to classify data, but also how to learn the key features of an image that best encode 
the class.
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Neural networks
This more complex task was solved two decades ago using a model representation 
closer to the one we supposedly use at the analytical level in our brain: neural 
networks.189 It probably sounds surprising today that neural networks could be so 
successful in the 20th century but then be followed by more than a decade of relative 
quiet; we shall see later why this eventually happened. The architecture of this early 
achiever is represented in the bottom image of Figure 4. Given the task of handwritten 
character recognition, the machine managed to learn a neural network achieving less 
than 1% error on testing, which is not just very good, but in fact allowed the technique 
to be used for substantial industrial deployment.190 

Figure 4  
 
Top: Classifying an image had been historically done by a two-stage process, whose 
first step was to compute features from the raw image carefully engineered and 
optimised by humans (also called a feature extraction module). Learning a classifier 
was then based on these extracted features as input, rather than the raw image.  
 
Bottom: LeNet5 was among the first attempts to get rid of this human bias in the 
process and let the machine decide by itself the best ways to learn a classifier directly 
from the image, using neural networks. Architecture taken from LeCun, Y., Bottou, 
L., Bengio, Y. & Haffner, P. (1998). ‘Gradient-based learning applied to document 
recognition’, Proceedings of the IEEE, Vol. 86, No. 11, pp. 2278-2323.

The principle of a neural network is simple: it assembles simple basic functions, 
neurons, that are not much more complex than a local decision in our decision tree. 
Each neuron takes input from others and computes an output signal that aggregates all 
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inputs. Its output signal is then used as input for another neuron. This is an abstraction 
of the processing happening in our brain, but this local abstraction is simple and in fact 
not where the power of the whole network lies. The key to training a powerful neural 
network is its architecture, the global organisation of all neurons, typically in layers 
(seven in LeNet5, depicted in the bottom image of Figure 4). The layered design has 
this very intuitive notion that the machine is going to progressively learn an abstraction 
of the input features, towards new features that are good for the classification task at 
hand. In doing so, the machine is supposed to progressively bypass the step of human-
engineered features by learning its own representation of the task. The power of the 
machine is essentially the ability to very carefully optimise this step, by considering a 
colossal number of possibilities in order to keep only the best one.

All that is left to the human is the design of the architecture, and then letting the machine 
learn the crux of the model – the weight of each connection from one neuron to another 
one. This very roughly approximates the way a human would learn, with the brain 
adjusting connections between neurons throughout learning. In LeNet5, the key part 
of the architecture is what is called convolutions, which requires some neurons to be 
receptive to only a small subset of the neurons in the previous layer, inspired by studies 
in the brain for vision. Such neural networks are called convolutional neural networks. 

Applications using simply defined data flourish in the real world. In the 1990s data 
mining involved machine learning work prior to the progress of LeNet5. Perhaps the 
most prominent application targeted early by data mining was the general analysis of 
the shopping basket – requiring only a flat collection of transactions and therefore data 
represented in a much simpler manner than vision, speech or even text. Two decades 
later, convolutional neural networks would be recognised as a major landmark in 
machine learning. LeNet5 made it possible to analyse more complex data than just flat 
credit card transactions or simply defined resumes.

The bottleneck to scaling-up machine learning
It may come as a surprise that machine learning in the first decade of the 21st century 
was relatively quiet compared to today’s activity. There is an explanation for this: 
nobody knew back then how to train neural networks substantially ‘bigger’ than LeNet5.

To grasp the importance of the challenge, consider that the brain analogy suggests 
that the source of the ‘power’ of a neural net lies in its ability to progressively learn and 
model abstractions of the features of the world in its layered representation. This is 
very natural: we would not characterise a bird by the local colour of its body parts but 
by higher-order features that can then be used to compare a bird with other animals, 
such as its feathers, wings, and beak. Once one realises that the source of such higher-
level features comes from parts of the animal that are spatially related (one feather is 
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not split throughout the animal’s body, but stands as a local description of the animal 
and is very useful for guessing that it is a bird), it does not take long to realise that this 
property also holds for other categories of complex data that humans process very 
well, such as texts in natural language, speech, and music.

In fact, the power of neural networks to carry out such higher understanding of natural 
language processing was also discovered in the 1990s.191 It turns out that it also relied 
on a trick to capture, in the architecture, a specific property of data that we humans 
exploit to understand a text (or other kind of data for which this property holds, like 
music scores): the spatio-temporal dependencies that can be observed between words 
or sentences in a natural language written text. Expressed very roughly, the closer 
two words are in a text, the more likely they are to belong to the same grammatical or 
semantic unit.

Since we now understand why the architecture and its layered representation is key 
in neural networks – to model data that could be hard to model using, for example, 
simple if-then rules – we can return to our problem and can make it a bit more specific: 
how can we train not just bigger, but in fact deeper neural network architectures?

It took more than a decade to make a breakthrough that, by proposing the first 
scalable solution to this question, revolutionised computer science. It came with a new 
nickname: deep learning.

2012
If the analogy with the Cambrian explosion is appropriate, then 2012 is the year it 
all started, and it all started with a competition, but not (yet) with humans. Beginning 
in 2010, a large-scale image recognition competition was run using a now famous 
database, ImageNet.192 The scale of the problem made it orders-of-magnitude more 
complex than the one solved by LeNet5: the dataset contained more than 1,000,000 
images, with 1,000 different classes.

As in any competition, one would expect the top expert contenders to be really close to 
each other; such competitions – now popular in data science – happen to encourage 
new neat ideas to come forward and improve, even incrementally, the state of the art.

Things did not exactly happen this way for the ImageNet competition: in 2012, the 
winners delivered a model whose error almost divided by two the error of the runner 
up – while the previous year, the difference with the runner up was just a few percent. 
The competition was essentially a repeat of the LeNet5 achievement, but on a scale 
that virtually nobody could imagine: the runner up used human engineered features 



93

(called SIFT) while the winner was, as with LeNet5, replacing the two-stage process 
with a single pipeline in which the machine crafted its own features while learning its 
deep neural network.

Getting such a big difference from the runner up took more than just one neat idea, 
especially considering that the final neural network had up to 60 million parameters 
and more than half a million neurons. In fact, it took two sets of new ideas to get there: 
a set of powerful new ideas on how to train a deep network, and the use of a hardware 
component that is now fundamental in training deep neural networks – Graphics 
Processing Units (instead of the classical Central Processing Unit of a computer). In 
other words, it took better algorithms and better hardware to get such results.

This breakthrough was experimental, but it reshaped the whole field of computer 
vision in the following years, to a point where many of the contributions of the leading 
computer vision conferences converged on the design of deep learning algorithms. 
The age of feature engineering as it had been done, and for the purpose it was 
designed for before 2012, was over.

What happened in computer vision was soon to happen in other fields and for similar 
reasons: text, natural language processing, speech, sound, video, network analysis – as 
in social networks. All these fields reimplemented the key feature of deep learning, which 
is essentially to give the machine the ability to learn its own features from raw complex 
data to solve the problem at hand, instead of relying on humans to ‘pre-digest’ those raw 
features into ‘machine-readable’, ‘usable’ ones. Returning to our recruitment example, 
if our hypothetical company wanted to design its second stage of interviews, including 
commenting on Rorschach inkblots, free-form drawing and text, it could utilise this new 
technology, and then eventually it could (in theory) rely on a machine for its analysis.

This was arguably the start of the deep learning revolution. From this starting point, 
deep neural networks not only started to be even deeper; they started to be used for 
more and more problems, soon reaching any number of sophisticated applications 
– autonomous driving, automatic translation, intelligent assistants, chatbots, and 
beyond – reaching whole scientific fields or industries including climate, health, 
finance, biosecurity, insurance, banking, entertainment, gaming, telecommunications, 
infrastructure, defence, social and political sciences, social networks, etc. This list 
cannot be exhaustive. To get an idea of where the applications are today, or what the 
applications could be tomorrow, keep in mind that wherever there is data, there is 
potential input for machine learning.

During the International Conference on Machine Learning that was held at Stanford 
University in 2000, conference chair Pat Langley made the joke that it was time to 
step from machine learning to machine earning, meaning that the field had to level up 
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its game for industrial rewards. This is certainly not a joke anymore, and this raises a 
number of issues today, regardless of what we take these earnings to be and whoever 
gets to enjoy them. A subtler problem is that any user of machine learning needs to 
be careful about the use of the technology itself and be warned that using the outputs 
of machine learning does not go without consequences, including highly unexpected 
ones, as we shall now see.

A new era for machine learning 
Biased predictions and fairness
Let us step back for a moment: the reader might have already remarked that the 
picture of machine learning displayed so far – a field driven by a very strong technical 
backing to solve problems that matter – may in fact display weaknesses in the models 
it can learn.

If that is not the case, let us look back again to the decision tree in Figure 2. Another 
rule it yields is: If gender is female then we do not proceed. We conclude that if the 
machine gets to automatically process applications and reply to candidates for a first 
interview, then no female is going to show up at interview time, and no female is ever 
going to be hired as long as this model is used. If this decision tree were a real one, its 
impact would obviously pose a problem of fairness and discrimination. This example 
was crafted for the purpose of this chapter, but it turns out the problem described is 
real, and it in fact actually happened at a big tech company.193

Why this problem occurred is obviously the next question to ask, and the answer is 
simple: machine learning algorithms are not discriminatory on purpose, but they can 
be so good at learning that they manage to learn even the bias in their data, whether it 
discriminates against women, people of colour,194 or against other qualities. Remember 
that one needs to give the machine an objective function to optimise the machine to 
learn that a particular model is good with respect to this function, and one only gets 
what one wishes for: can we blame a model for being unfair when in fact the source of 
unfairness may just come from the simple fact that the original bill of specifications for 
the machine learning algorithm did not include fairness in it?

In fact, this is not just about the goal assigned to the machine, but also about the 
freedom or constraints we give for the machine to learn in an environment which can 
rapidly escape any decent control. It took less than a day to transform a neutral chatbot 
learning from Twitter interactions into an absolute racist.195 Such an event raises the 
question of accountability in a number of ways.
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Why this is happening 
At this point, it is useful to recall that the original bill of specifications for machine 
learning algorithms, as developed by Valiant, essentially contained the requirement 
of accuracy. This is just fine if the algorithm is supposed to learn a model to predict 
whether a board is winning or not in Checkers. This is just fine if the algorithm learns 
a model to predict whether a flower is from a given species. And this can be perfect 
if the algorithm predicts whether a plant has a specific disease. This is, however, not 
fine at all when we ask the model to predict whether a convicted person has a chance 
of reoffending given their past criminal records – and this is just one example. To 
understand the difference between the two categories of problems listed here, there 
needs to be an important metaphor put forward: Machine learning was born in the 
sterile room of computer science and mathematics.

To progressively reintroduce the Cambrian analogy, the Pre-Cambrian period for 
machine learning happened in the sterile room. Problems to be solved were just 
like formal models: simple in design, supported by simple assumptions that would 
make sense in a general purpose model, maybe naive in the belief that this would be 
sufficient to solve the biggest problems of the real world. For example, the problem of 
guessing flower species mentioned above was a popular one introduced in statistics 
during the 1930s.

In the Cambrian explosion period of machine learning, the whole field has been 
suddenly pushed out of the sterile chamber to expose its power to solve problems in 
the wilderness of the real world – its power, its weaknesses and the potential flaws 
in its deployment. It could have been possible to predict that deploying a chatbot 
that learns in an environment lacking sufficient control would result in unfortunate 
consequences. It is sometimes much less obvious to anticipate problems.

Subtle weaknesses and causality
If the discrimination problem in the example of the decision tree in Figure 2 can be 
easy to catch, some weaknesses can be subtler: the assumption that the source of 
randomness does not change in Valiant’s model is mostly fine when we model games 
or predict plant diseases. It is absolutely not fine when it comes to health: suppose we 
have a model predicting whether or not to give a specific jab for a non-lethal condition. 
Once the riskiest population has been inoculated, if we keep on using the same model, 
we will just target the same people, whereas the source target of the disease might 
shift (as a function of weather, living conditions, development or just mutations). This is 
a case of what is called distribution shift.

Researchers are also investigating the extreme case of such shift which is done on 
purpose: train a model on a particular domain to predict a label, and then transfer 
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this model to work on a different domain. Such a transfer learning task is important 
because (i) it allows data scientists to solve several tasks with a single model and (ii) it is 
particularly useful when the information from labels is not available on the second task – 
which can happen when, for example, such information would be too costly to obtain.

Let us drill down into some other subtle consequence of applying machine learning, 
related to distribution shift, but not due to external factors as in our health example. 
This will explain another reason why some extra care and caution needs to be taken 
when using machine learning in highly sensitive applications, like the decision to hire 
people or decide on someone’s chances to reoffend. Here another new component of 
post-Cambrian machine learning emerges: causality. Applying a model that is biased 
for a long time might serve to reinforce the hidden bias: women receiving fewer and 
fewer job offers from our decision tree will inevitably see their proportion grow in 
unemployment statistics, which will then reinforce any other subsequently trained 
model from current data into including even stronger bias against hiring women. 

Explainability versus the rush for complexity
There are also some much subtler problems than those mentioned above, ones 
that were left hidden in the beginning of this chapter. We do not even need to apply 
our decision tree in Figure 2 to realise that the system only recommends men for 
interviews, and therefore realise after seeing a cohort of interviewed men that the 
system discriminates against women. It suffices to simply look at it to realise that the 
most influential variable, the one that appears in all if-then rules built from the decision 
tree, posits that gender is going to be the most influential feature in hiring people. This 
possibility, to guess that the model is going to be biased or unethical even before it is 
deployed, is no longer possible with deep neural networks.

A collateral event of the breakthrough in 2012 on the ImageNet competition was that it 
pushed for a race towards getting more and more complex models to solve problems: 
since the source of the breakthrough’s result was believed to be its success in training 
more complex models, why not do the same strategy systematically: to get better 
results on another problem, one should just train more complex, deeper models. This 
brought about collateral damage of trading interpretability for more performance, 
which may be fine for the ImageNet competition (interpretability was not a requirement 
of the competition) but it will inevitably create problems if such models are applied in 
the public sphere, where rules and regulations would typically be developed to prevent 
this. Such is the framework of the European General Data Protection Regulation.viii

viii The General Data Protection Regulation, or GDPR, is explored further in other chapters..
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Privacy
There are additional problems that do not appear in the first part of this chapter 
because they do not display a flaw or limit in the design of the early theories of 
machine learning. They appear because of the context in which machine learning is 
applied today (this could have been the case of our chatbot). 

Consider another example: our hiring company happens to have competitors. Among 
those, it agrees to collude with one to share information related to their applicants, to 
learn a model developed from the union of their databases. Since it is trained over a 
bigger set of candidates, the model should be more accurate than if it were trained 
using just one of their databases. This is arguably a very strong motivation to share 
information. However, the companies require that the other (or any other external party) 
does not have access to their data in the clear. Such a constraint, that requires training 
a model using data that cannot be seen in the clear is called federated learning. It is 
usually addressed by a combination of machine learning and cryptographic techniques. 
Federated learning is also getting lots of attention because it addresses another 
concern against which early theories in machine learning were not challenged: privacy. 
We are witnessing the birth of marketplaces where data handlers do not share their 
data but instead share the ‘hints’ that help to train other peoples’ algorithms.ix Such 
hints can be shared in exchange for remuneration and – if sufficient care is given – 
they should not unveil an individual’s personal information.

However, it should be stressed that in the case of federated learning, the requirement 
to be privacy compliant usually comes with a significant technical levy on machine 
learning, to make sure that learning parallels the performances of the non-private case, 
for example, to make sure that the final model is still accurate enough.

Learning and inference everywhere (and an 
unexpected consequence)
Consider a follow-up example regarding privacy: what would happen if, for example, a 
person had their personal information on a device (a smartphone) and wanted to run 
a hiring model directly on the smartphone to check whether they would be a potential 
hire for a specific company (such a model could be provided by a third party, helping 
people to find a job). On-device learning or inference (which means we just run the 
model on our device, like in our hiring example) is getting a lot of attention, even in the 
research community, for the simple reason that even if it is just to locally run a model, 
one needs to pay attention not just to privacy but also to the constraints of the device, 
that are not necessarily capable of running models as big as the ones we now see in 

ix They are sometimes called ‘Gradient marketplaces’.
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deep learning. Considerations on storage, communication and energy consumption 
are important on such devices, and such constraints are becoming a major challenge 
for the field, especially as people are now beginning to consider all possible devices in 
the Internet of Things. In fact, it was recently revealed that the global energy footprint 
of machine learning is spectacular, as training some of the most complex deep learning 
models (with hundreds of millions of parameters) bears a carbon footprint that far 
exceeds that of the whole life of a car.196 Because of this, we can expect much more 
efficient machine learning algorithms, even outside the market of mobile devices or 
‘intelligent’ Internet of Things appliances.

Machine learning in an adversarial world
Another problem that has become crucial given the rapidly growing interface that 
machine learning has with society and the public sphere at large is adversarial 
tampering. Consider the setting of our hiring company, learning a model using its own 
data to predict whether a candidate is to be contacted for an interview. Suppose that 
the algorithm used is accurate and fair, not biased. What could possibly go wrong? 
One possible answer: data poisoning. Knowing the algorithm that is going to be run to 
build a model, it would be possible to locally influence the predictions of the model it 
is going to learn, with a simple protocol: figure out the eventual slight changes to make 
in the database to ensure that the model learned overall looks the same (as it would 
be without doing anything) but radically changing its prediction on a few targeted 
candidates, with the objective to make sure they get (or do not get) interviewed.x

Worse than local bad results: distorting  
the fabric of reality
Data poisoning is a simple example of what could come out of the Pandora’s box 
of possible misuses of machine learning, whether accidental or made on purpose. 
Another example, which has recently made it to the headlines, is a breakthrough 
utilising the potential of deep learning to generate complex data. In this case, the 
machine learns how to generate new (and realistic) images, sounds, text, and the 
like. Let us stick to the image case for simplicity. The way these techniques work is 
interesting in itself. Somehow, they work in reverse to the way deep learning was 
originally designed; instead of taking raw images and converting them to simple 
machine learned features useful for classification, by passing through learned layers of 
progressive abstraction, we start from such simple abstract features, typically randomly 
sampled, and then go the opposite way to create more and more realistic features 
through sets of layers, until the last layer where, suddenly, a fully realistic image 
appears. This technique is a generative model. 

x This subject is also covered in detail in Data security and AI.
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Modern generative models were born in 2014 and were recognised as a breakthrough 
for computer science as part of the ACM Turing Award 2019.197 This recognition came 
even faster than the recognition of the earlier work of Geoffrey Hinton.198 An original 
use of the technique came equally quickly: to show that the machine could become an 
artist.xi Unfortunately, also equally fast-paced was (mis)use of generative models, in a 
now infamous piece of technology that some people believe could threaten the core of 
democracy: ‘deepfakes’.199

There is now clearly an arms race around deepfakes, to generate them and detect 
them, and if the technology is still too expensive for the layman to generate realistic 
content, it is a completely different story for more powerful actors like state actors.200 

It is beyond the scope of this chapter to explore this further, but it is worth mentioning 
that the technology was developed initially by somehow implementing this arms race in 
the machine. Indeed, in the original training framework, training involves two competing 
players – a generator (which is the system we want) and a discriminator, which is used 
against the generator. The generator is jointly trained with the discriminator, the latter 
trying to guess between the generated content and a set of ground truth – if we want 
a generator as good as Picasso, then the ground truth could contain the complete set 
of work from the famous painter. As the generator gets better and better, it becomes 
harder for the discriminator to tell the generated data and the ground truth apart. 
Ultimately, our generator becomes the perfect forger for new Picasso artwork! Or, 
if the ground truth contains the set of television interviews of a President, then the 
generator learns how to generate new interviews that never existed and, with a little bit 
of experience from the persons running the whole system, the generator can forge not 
just random interviews but new interviews with a purpose – precisely deepfakes. 

Not everybody agrees on the potential impact of deepfakes – from classical 
propaganda to threats of ‘infocalypse’ and the distortion of reality – but it seems 
reasonable to believe that, in the same way as many disruptive technologies could be 
used for opposite (good/bad) purposes, the same may happen in the use of machine 
learning against the spread of deepfake messages, for instance, using machine 
learning to detect deepfakes. This will contribute to making trust a fundamental part of 
the deployment of machine learning.

Superhuman performances and where they are deployed
The deepfakes example shows how machine learning has become efficient in solving 
the problem at hand. It should be clear from this last part of the chapter that the field of 
machine learning is now growing horizontally as well, bringing more and more (distinct) 
problems to solve to the table of researchers and engineers.

xi For an example, see ‘Edmond de Belamy, from La Famille de Belamy’.
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The deepfake problem is not the only problem for which machines are reaching 
human or superhuman performances on complex tasks, but it is fortunately not always 
a source of concern. On the entertaining side, the successes of Checkers and Chess 
automation have been followed by renewed interest in reinforcement learning, and 
subsequent breakthroughs have occurred in which the machine learning part has been 
substantially improved – not just the hardware component as was essentially the case 
for IBM’s Deep Blue. One such breakthrough, AlphaGo, which again uses deep neural 
networks, achieved the remarkable ability to be able to train a machine Go player 
without any other information than the game’s rules to start with, training itself from the 
sole observation of games. It was able to reach superhuman performance in just a few 
days of self-training.201 There is little doubt that these recent advances in reinforcement 
learning will have significant impact in other fields, in particular, robotics.

On the more sober side, we now know that just an excerpt of Facebook data can 
basically allow a machine to know us better than our own family.202 Independently of 
the considerations of this chapter, this invites a different kind of question than the ones 
classically asked when a data breach happens, namely, what could be achieved with 
this kind of data, what could we do with it, and what could be learned from it?

Still, we need better machine learning
But the machine is – unfortunately – still not perfect in circumstances where we 
wish it were. For example, we know that deep learning models are sometimes 
brittle to classification:203 slightly altering a road sign with a change that would make 
no difference for a human can produce dramatic changes in the output of a deep 
neural network for computer vision. Making machine learning more robust is a very 
important challenge for the field. The application of machine learning in such areas as 
autonomous cars will also be an important challenge for regulators.

After the Cambrian explosion of machine learning
It is appropriate at this point to come back to the Cambrian analogy, and now try to 
complete it, as shown in Figure 5. We now know better what happened during the 
Earth’s Cambrian explosion, and it is easy to make a more complete analogy with 
machine learning, where oxygen becomes data and the technology gets to conquer 
a dimension of technology previously unavailable, because the proper infrastructure 
for data collection and storage, and the necessary computational power, was not 
available. There is, as shown in Figure 5, considerable heat and excitement in the field, 
as exemplified by the fact that one of its two major conferences (NeurIPS, ‘Advances 
in Neural Information Processing Systems’) was sold out faster than some rockstar 
concerts in 2018 – and, it turns out, for a large crowd of 8,000+ registrants.
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Figure 5 
 
The parallel with the Cambrian explosion (left) for machine learning (right) is in fact 
quite striking if we make the effort to go until its end, risking a speculative answer on 
the future of machine learning (Fox, D. (2016). ‘What sparked the Cambrian explosion?’, 
Nature, Vol. 530, pp 268-270).

What is interesting is what comes next. If the current state of Cambrian paleontology is 
accurate, the Cambrian explosion saw the rise of predators – literally born in the food 
pantry of evolution. One should be careful of drawing a parallel with machine learning, 
but nonetheless there is a lot of opportunistic behaviour that is observable in the field, 
especially on its industrial side. 

In particular, there is currently a rise in the interest of collecting data whose machine 
learning-based exploitation should prove far more valuable than Facebook-level 
data: medical data. It is arguably more valuable because one’s preferences as stored 
in Facebook will inevitably change through years. On the contrary, the one who 
possesses the medical data of people – and in particular its lowest level description, as 
in genetic sequences – possesses them forever.xii

 
There’s no doubt that machine learning technology will be here to lead science 
breakthroughs on such data. One can only hope that the lessons from the past 
successes, threats and failures will contribute to shaping good practices and safe usage 
for our ever-more-personal information to be used, because it suggests that the ones in 
position to solve the related problems will be in the position to rule our tech planet. We 
are probably, from this standpoint, witnessing the beginning of an age that is going to 
reshape our relation to technology, in part under the influence of machine learning. 

xii And of course, one’s genetic data also potentially discloses information about other people as well, forever.
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The toolbox to make this work at proper scale
To finish on a positive note, from a technical standpoint, the field of machine learning 
embraced mathematics early as a strong backup field to safeguard its algorithms and 
theories. This obviously started with statistics but rapidly spread to a host of different 
mathematical horizons and theories. I believe mathematics will be instrumental in 
contributing to safely developing the field further. This will be an absolute necessity.
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DATA SECURITY AND AI

Benjamin Rubinstein

This chapter examines the security and privacy implications of deploying AI in 
real-world commercial systems. For more than a decade, academic research has 
demonstrated susceptibility of learning systems to attack, across a wide array of 
machine learning methods and numerous application domains. While much of the 
excitement in AI is justified by the capacity of machine learning to deliver actionable 
insights from data, these demonstrations suggest that policy and business leaders 
should be mindful of unintended consequences. This chapter will consider attacks that 
have been demonstrated against AI systems, including those ‘outside the lab’. While 
adversarial machine learning is a young and active area of research, we will overview 
common patterns for defence that have emerged. Pointers to AI being used within 
attacks on digital systems will be provided, highlighting the dual-use nature of artificial 
intelligence technology. The chapter concludes with recommendations for policy and 
decision makers.

Introduction
Artificial Intelligence is enjoying a renaissance. Driven largely by progress in machine 
learning, available data, and massive computational power, AI is finding meaningful 
applications from medical diagnostics, to fintech, and autonomous vehicles. However, 
the very adaptability that is driving success in such applications, also exposes machine 
learning systems to manipulation and unintended consequences. 

The latest incarnation of research on machine learning in adversarial environments is 
known as adversarial machine learning.204 Challenges in adversarial learning include:

1. What attacks could be launched against machine learning systems in  
real deployments?

2. How susceptible are learning systems to such attacks?

3. How could AI systems be designed to be less vulnerable to attack?

In its current form, adversarial learning dates at least to Lowd and Meek in 2005.205 
A 2013 paper, Intriguing properties of neural networks, further raised awareness by 
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demonstrating sensitivity of deep neural networks – contradicting the narrative that 
large neural networks are incredibly accurate in most situations.206 However, many of 
the concepts of adversarial learning pre-date much of modern machine learning and AI 
altogether.

Taxonomy of attacks on machine  
learning systems
A weakness of systems that rely on data for their operation – and AI certainly falls into 
this category – is that they are susceptible to attacks based on that data. A popular 
taxonomy of attacks on the security207 and privacy208 of machine learning identifies 
threat models of possible attackers. Threat models describe a hypothetical adversary 
– their capabilities, knowledge, and goals. The concept is used for risk assessment and 
prioritisation. These are outlined below.

Influence
• Causative attacks manipulate the learning process with control over training data.

• Exploratory attacks gain knowledge about how algorithms and models work or 
influence their predictions without affecting training data.

Security violation
• Confidentiality attacks obtain information from the machine learning system, 

compromising the privacy of the training or test data it uses.

• Integrity attacks induce false negatives, for instance to evade detection.

• Availability attacks cause denial of service – or result in an AI system being 
switched off due to legitimate behaviour being flagged as malicious – usually via 
false positives.

Specificity
• Targeted attacks focus on causing a different outcome for a specific instance. 

For example, getting a spam filter to block a specific email.

• Indiscriminate attacks encompass a wide class of instances. For example, 
getting a spam filter to block all emails.

Where the security violation reflects an attacker’s goal, specificity adds nuance. 
As originally worded, integrity and availability violations implicitly focus on attacks 
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on classifiers.xiii However, the notion of integrity applies beyond classification: any 
unwanted manipulation of the output of machine learning corresponds to a breach 
of integrity. For example, shifting sales accounting from one quarter to another could 
manipulate forecasts of quarterly profits or commodity prices209 – an integrity attack on 
autoregression.xiv

Figure 6

C.I.A. triad of information security. Image credit (CC-SA-3) John Manuel Kennedy Traverso. 

Likewise, availability attacks cause a machine learning pipeline to become so 
dysfunctional on legitimate use cases, that the defender incurs significant cost owing to 
the use of AI; or data processing is switched off altogether, making subsequent attacks 
easier to launch. Confidentiality, Integrity, and Availability taken together form the 
C.I.A. triad of information security (see Figure 6), which has been extended and widely 
applied across cybersecurity. While the C.I.A. triad has been criticised as being too 
focused on data, it works well where data is a primary concern, as in AI.

Two considerations omitted by the taxonomy have emerged as important to adversarial 
machine learning threat models.210 The first refines the focus of the influence axis to 
include limitations faced by the attacker, and the attacker cost model.

xiii Classification is a popular machine learning task in which each input instance must be placed into one of a 
discrete set of categories or classes. For instance, whether or not a given picture contains a kitten.
xiv In statistics, autoregression is a method of using past information to predict future information.
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• Data transformation form and cost: exactly what transformations can an 
attacker realistically apply to data, be it when the model is being trained or 
being tested? Where there are a range of feasible transformations, each with 
different degrees of magnitude, how much cost is the attacker willing to go to in 
achieving their intended security violation?

• Attacker knowledge: how much information does the attacker possess about 
the learning process, the learned model, and the existing data sampling 
process? At its most basic, knowledge includes white box knowledge of a 
learned model under attack, as opposed to black box attacks, which assume no 
knowledge of the learned model or training process.

Confidentiality
Confidentiality attacks seek to reverse the learning or prediction process to breach 
privacy of input data. While privacy attacks in general have long been known in 
practice and in privacy literature, attacks specific to machine learning have emerged 
only in the past few years.

Model inversion attacks
For a model output of interest – such as a face classifier’s detection of a police officer 
– if we can find an input data point that leads to the target output, then we can identify 
characteristics of individuals in the data set.211 The process of finding the input data 
point is called model inversion.

For example, in an analysis of models trained to recommend treatments based on 
patient genetics and history, researchers were able to leverage public population 
statistics and model inversion to accurately predict patients’ genetic markers based on 
their recommended treatments.212

It has been argued that model inversion in general only produces average or indicative 
instances that yield a target model output – not an actual input such as from a training 
set – and in the case of medical treatment inversion, assumes attacker knowledge of 
sensitive information, for example, a patient’s Warfarin dose.213 However, in the case of 
so-called extreme classification – multiclass classification over enormous numbers of 
classes – any element of a class may lead to privacy breach.214 For example, in a facial 
recognition system, each class corresponds to an individual; and while model inversion 
is unlikely to reveal an actual image of a target person, it may synthesise a realistic 
‘average’ image.
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Membership inference attacks
Membership inference attacks aim to determine whether a given datum, such as an 
individual person, was in the training set of a learned model. Recently, such attacks 
have achieved remarkable success. One example reached 90% accuracy inferring 
membership against the commercial Google Prediction API, in a completely black 
box setting without knowledge or access to the training data, its characteristics or 
distribution, or the specific algorithms used by the learning system. The attack used 
a capability to probe the system with inputs, as designed. Similar results have been 
reported against Amazon Machine Learning, and include high accuracy inference of 
membership of particularly privacy-sensitive health data – over 70% accuracy on a 
Texas hospital discharge dataset.215 

Such attacks are not only effective, but simple to implement: they involve training 
secondary ‘shadow’ models for which training dataset membership is known, then 
training a third ‘membership inference’ classifier against these models to make accurate 
predictions as to whether a candidate belongs to the (hidden) original training set.

Mitigations for membership inference attacks essentially involve limiting the target 
classifier’s specificity or accuracy on training data: memorising training data is bad for 
leaking membership.216 A brief introduction to differential privacy is included below; 
notably, differentially-private learning algorithms are guaranteed to be secure against 
membership inference,217 and are robust against model inversion.218

Classical privacy attacks
While the above attacks on confidentiality target AI systems specifically, it is 
appropriate to view privacy attacks on data analysis more broadly. Often the 
boundary between ‘AI’ and ‘algorithm’ is unclear, and it is important not to ignore less 
sophisticated attacks by mislabeling a target system as complex and somehow robust. 
Classical attacks include, but are not limited to, those outlined below. 

• Linkage attacks re-identify a dataset by joining it to another dataset. For 
example, the complete Netflix movie watching history of some individuals 
was revealed by taking an anonymous dataset containing de-identified Netflix 
movie watching histories and ratings, and combining it with similar information 
found on IMDB user profiles.219 Where unique information is common between 
datasets (such as when an individual gives the same ratings to the same 
movies on both Netflix and IMDB), this is a simple database ‘lookup’. Typically, 
a new data release may be incorrectly considered ‘de-identified’ by removing 
personal information, even though it carries identifying (and potentially sensitive) 
attributes such as health services or prescription medicines. A second pre-
existing source might contain personal information and share some pattern 
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with the first dataset, such as unique combinations of child ages.220 However, 
individuals need not be uniquely identified to suffer harm from data releases: 
for example, if they are identified in a group that is homogeneous in a sensitive 
attribute such as HIV.221 The potential for linkage attacks should serve as a 
significant risk to releasing unit-record-level micro data.222

• Frequency attacks exploit available population-wide occurrence frequencies 
of individuals in a data release, to identify individuals by reversing hashing or 
encryption.223 For instance, consider an encryption scheme used to hide names 
during privacy-preserving record linkage. Encrypted, the names are individually 
indistinguishable from random information. However, when sorted by frequency 
in the encrypted release, they will closely align with any available source of 
unencrypted names also sorted by frequency (e.g. from birth records).

• Differencing attacks exploit available information of a time related nature across 
data release series. For instance, if it is known that a target passenger is the only 
person who could board a bus at a certain remote location (near their house), 
one can take aggregated, ‘de-identified’ count data from public transport logs 
and find the difference between the number of people before and after the 
specified stop to determine whether the target had boarded at any given time.224

• Reconstruction attacks seek to reconstruct sensitive attributes of privately-held 
unit record-level data, from aggregate statistical releases. The United States 
Census Bureau recently performed a large-scale reconstruction to assess 
their existing disclosure control mechanisms of aggregating census data for 
external release.225 This involved running a standard mathematical optimisation 
procedure that found ‘most likely’ attribute values from the raw data that could 
have produced 2010 statistics released by the Bureau. Their analysis showed 
highly accurate reconstruction, demonstrating insufficiency of existing protocols. 
As a result, the 2020 U.S. Census will be fully differentially private.

Differential privacy
Differential privacy has recently emerged as the leading data protection framework 
for releasing statistics or AI models, derived from sensitive data, to untrusted third 
parties.226 Differential privacy leverages randomisation: a differentially-private 
mechanism takes a data set and, for example, adds random noise, then outputs the 
result. The average results can be very accurate, but details about an individual are 
obscured by randomness.227 Differential privacy is not itself an algorithm, nor is it a 
property of a release, but rather a property of release mechanisms.

To provide differential privacy, a mechanism’s outputs must exhibit some randomness. 
Where each record in a dataset represents information on an individual, arbitrary 
changes to a single record cause limited change to the probability of releasing any 
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particular output. Differential privacy has been adopted for the U.S. 2020 Census228 
and has been deployed within services by Google,229 Apple,230 Uber,231 and a Transport 
for NSW data release.232

Differential privacy’s success is owed in part to three beneficial factors:

1. A strong security property: the presence, absence, or attribute values of any 
individual input record are indistinguishable based on a differentially-private 
release. This security property is guaranteed even in the face of auxiliary 
information on a target record of interest or on other input records, for example 
via linkage attack, even when an attacker has access to large or even infinite 
computational resources, and even when the attacker is knowledgeable of 
the differentially-private mechanism’s inner workings. This is in stark contrast 
to existing protection measures, such as k-anonymity, which do not offer any 
security property but instead offer only qualitative protections, tend to be 
vulnerable to linkage attack, and tend to focus on the released data, not the 
release process.

2. Generic mechanisms as powerful building blocks: while designing new 
differentially-private mechanisms from scratch can be challenging, a growing 
number of available building-block mechanisms are simple to implement and 
have well-understood privacy and utility guarantees. Examples include:

• Laplacexv and Gaussian mechanisms for releasing numeric data;233

• the exponential mechanism for private optimisation;234

• objective perturbation applicable to many learning methods;235

• the sparse vector technique for releasing realistic synthetic datasets;236 
• many more, as overviewed by Dwork and Roth.237

Collectively these off-the-shelf mechanisms are known as generic mechanisms. 
Many of these generic mechanisms make non-private data analysis privacy 
preserving. To do so, they require calculation of how sensitive the target 
analysis is to changing any input record. The more sensitive an analysis is, the 
more randomisation the mechanism must employ to achieve a desired level of 
privacy. Using larger input dataset sizes or releasing fewer output values often 
reduces this sensitivity and increases privacy without utility loss. While sensitivity 
calculation can be involved, recently techniques238 and open-source tools239 
have become available to automate this process.

xv The Laplace distribution is very similar to the more familiar Normal distribution. It is in the same exponential 
family, it has heavier tails than the Normal, and is implemented as standard in all major statistical software 
packages.
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3. Rules of composition: to build up more complex data analyses such as machine 
learning systems, off-the-shelf generic mechanisms can be run in sequence, 
with the outputs of one mechanism fed into a subsequent generic mechanism. 
Such workflows may involve multiple mechanisms accessing the sensitive 
dataset in its entirety (sequential composition), or only on distinct partitions 
(parallel composition). Composition rules account for the way the privacy cost 
grows when differentially-private mechanisms are combined.240 Combinations of 
off-the-shelf generic mechanisms have produced numerous differentially-private 
versions of common machine learning algorithms, including linear classifiers,241 
non-linear kernel methods,242 deep neural networks,243 database queries,244 and 
much more.

Federated learning
Where differential privacy can defend against untrusted release recipients who 
try to reconstruct, re-identify or link against data releases, classical cryptographic 
technologies target a different but complementary threat model: storage of data or 
models on untrusted devices, transmission across untrusted channels, or computation 
on untrusted services. The latter could be computation on a cloud provider like 
Microsoft Azure, or potentially collaborative computation across multiple devices held 
by different people – the focus of federated learning.

As an example, Google researchers have developed a secure aggregation protocol,245 
whereby Google users collaborate on a global model with their own data. Users do 
not share their data, but rather use their data to update a local model, which is then 
communicated under encryption to a centralised server. Without decryption, the 
server cannot distinguish these updates from completely random data, however with 
homomorphic encryption,xvi the server can perform (blinded) computations on such 
updates. The secure aggregation protocol only permits the server to decrypt and 
include these updates in its global model if hundreds or thousands of users contribute 
similar updates. 

While a recently proposed local differential privacy model protects against untrusted data 
curators,246 cryptographic protocols have an advantage that input data can be decrypted 
exactly as encrypted. Sometimes the large computational resources that can be required 
by homomorphic protocols limit practical application of this technique.

xvi Homomorphic encryption is a way to protect information by encrypting it while still allowing some 
mathematical operations to be performed on it.
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Integrity and availability
The issues related to integrity and availability of machine learning differ markedly 
to those related to confidentiality: far more attention has been paid to integrity and 
availability attacks than privacy attacks on learners. Unfortunately, much less is known 
about general effective defences. 

The discussion in this chapter is largely agnostic to the type of security violation 
(integrity versus availability), as many of the same issues arise in both. However, the 
distinction tends to be most relevant to binary classification, where it makes sense to 
discuss false positives and false negatives in the first place;xvii 

 the literature focuses on integrity attacks (induced false negatives or evasions) as a 
greater threat to learning systems.

Adversarial examples
After a model is created by training, an attacker may seek to modify input points to 
manipulate the model’s predictions. For example, altering a malware sample until it is not 
detected by anti-virus software is an integrity attack attempting evasion.247 Adversarial 
examples – exploratory, or test-time attacks – typically begin with a regular instance (such 
as a malware sample) and proceed to modify that instance to alter the model’s prediction 
of it. Test-time attacks have been demonstrated in a wide variety of domains, including 
network security,248 and email spam filters.249

Recently, much activity in adversarial learning research has been initiated by the 
success of adversarial examples against deep neural networks, particularly in computer 
vision250 – images can be modified by an imperceptible amount for a human but cause 
them to be egregiously misclassified (this is demonstrated in an example on page 114). 
This phenomenon has been reproduced by numerous researchers and is a strong 
rebuke to the popular narrative that deep learning necessarily generalises well in such 
domains.xviii 

Attacks on vision systems represent a potential safety threat to self-driving vehicles, 
for example. Early attacks that manipulated trained classifiers at the time of making 
predictions relied on researcher knowledge of machine learning to carefully craft 
adversarial examples. Today, adversarial examples can be automated by framing the 
search for adversarial examples as an optimisation problem.251 This is straightforward, 
with freely available tools for automatic differentiation.252

xvii In the context of binary classification, a false positive (negative) is an instance that is incorrectly predicted as a 
positive (respectively negative) by the classifier. In security, the malicious class is conventionally labelled positive.
xviii Generalisation, in the context of machine learning, refers to a model’s ability to properly handle new, 
unseen data.
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Adversarial examples can also be made effective with little or no knowledge of the 
target classifier. Effective attacks have been demonstrated in black box settings – 
without knowledge of model, learning algorithm or training data. In this kind of attack, a 
surrogate model is first trained on (hopefully) similar training data as used by the target 
model – or potentially on training data labelled by the target model. Then adversarial 
examples are formed by a white box attack against this surrogate model – attacks that 
make use of the inner structure of model. 

A simple experiment demonstrates the phenomenon of adversarial examples. 
Here we have trained a support vector machine using the popular OpenCV 
open-source computer vision library, to accurately classify face images (well 
positioned in similar lighting) as belonging to one of two people. Examples of 
the subjects follow:

In under a few seconds, we apply automatic differentiation to modify the left 
example by a small but strategically chosen number of pixels. The following 
imperceptibly perturbed image fools the classifier into misclassifying the 
image of the first subject as the second subject. The curve below displays the 
classifier’s prediction score changing as more gradient steps are taken, until 
ultimately the classification flips.

Images sourced from the Yale Face Database.
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In their experiments attacking commercial service Clarifai.com, researchers from 
Shanghai Jiao Tong University and University of California Berkeley achieved 76% 
success rates.253 Similar attacks on models hosted by Google and Amazon have 
yielded misclassification rates of over 96% and 88% respectively.254 In some cases, 
even universal perturbations may be possible:255 while most adversarial perturbations 
are used to cause a single image to be misclassified, universal perturbations can be 
used to cause a range of images to be misclassified.

Adversarial examples are not limited to laboratory settings. They have been 
demonstrated in the physical world with cell phone images of adversarial examples 
fooling learned models,256 universal adversarial patches that can be printed as 
stickers,xix 257 large wearable badges that can hide people from people detectors in 
video surveillance,258 and in speech-to-text with 100% success rates reported against 
Mozilla’s DeepSpeech system with perturbed audio waveforms 99.9% similar to original 
waveforms but recognised as arbitrary text.259

Poisoning attacks
Poisoning attacks involve adjusting the inputs with new data to deliver toxic results. 
While less attention has been paid to attacks that poison training data to influence the 
learned model, results demonstrate that learning models can be highly susceptible to 
such causative attacks.xx As an example of an early availability attack,xxi an attack on 
the open-source SpamBayes email spam filter presented a compelling threat model, 
in which just 1% of messages that were clearly malicious or spam included ‘good 
words’, such as those found in a dictionary or online newsgroup data set.260 Assuming 
such emails were correctly labelled by the user as spam, and trained on, the spam 
filter subsequently targeted close to one in two legitimate messages as spam (a false 
positive), rendering the filter unusable.

Machine learning models for detecting anomalous traffic, such as denial-of-service 
attacks, on backbone networks, have also been successfully poisoned.261 The threat 
model in such integrity attacksxxii leverages the online nature of learning-based 
security appliances: continuous training over time is necessary to allow the anomaly 
detector to adapt to changing characteristics of benign data. So long as poisoning 
is subtle enough not to be flagged as malicious, it is likely to continue to be used to 
train security systems. The idea can be taken to the extreme in a ‘boiling frog attack’, 

xix The stickers can be placed on objects to cause a classifier to misclassify them, for example, an adversarial 
patch stuck to a stop sign could make an automated vehicle misclassify it as a speed limit sign.
xx Causative attacks manipulate the learning process with control over training data.
xxi Availability attacks cause denial of service or result in an AI system being switched off.
xxii Integrity attacks induce false negatives.
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in which poisoning levels slowly increase over time as the detector becomes more 
and more influenced to permit malicious data through. Again, early work was carefully 
crafted by hand, by machine learning experts. 

Poisoning attacks have also been demonstrated against popular malware detection 
tools.262 Motivated by concern in the machine learning supply chain, researchers from 
New York University have demonstrated how to create deep neural network backdoors 
– called trojans – such that deployed models can retain state-of-the-art performance 
on normal data, but in the presence of a ‘trigger’, the model reliably misclassifies.263 
Their demonstration included an ‘accurate’ street sign detector that would be reliably 
fooled when a small sticker was placed in the corner of the sign. Such attacks have 
consequences for self-driving cars.

Defensive strategies
In contrast with the privacy attack setting, where differential privacy and cryptographic 
protocols together provide strong defensive technology, little is available in the way 
of strong, universal, defences against poisoning attacks and adversarial examples. 
Many speculative defences have been proposed, however almost all have quickly 
succumbed to attacks. For example, a group of Berkeley researchers famously broke 
seven adversarial defence papers accepted to the International Conference on 
Learning Representations conference between the time papers were posted online 
and the time the conference took place.264 While the discipline of robust statistics265 
has established techniques that can provably resist outliers (at training time), the forms 
in which data is poisoned do not reflect threat models in adversarial machine learning.

There is a possibility that, in time, these results will be adapted. Currently adversarial 
training is the most effective and generally applicable strategy: the defender augments 
their training data by including adversarial examples produced by a hypothetical 
adversary.266

Finally, in a recent paper, researchers from Carnegie Mellon University’s Bosch Center 
for AI proposed the concept of certified adversarial robustness, which connects integrity 
defences to differential privacy by repeatedly feeding test points modified with random 
noise into a susceptible classifier.267 The resulting randomised classifier’s predictions are 
accompanied by certifications of robustness: no perturbation within a small radius of a 
given input could change the classifier’s predictions. Where certifications can be made, 
better understanding of the effectiveness of tampering is possible.
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AI-enabled attacks on security and privacy
We have so far focused on security and privacy attacks on machine learning  
systems, however unintended consequences extend to the harmful use of AI systems 
more broadly.

Security attacks at scale
AI and machine learning offers unprecedented capabilities of automation. While pre-
AI processes based on human decision making might individually be more accurate 
than current AI-based systems, the ability to make decisions en masse can change the 
value proposition for attackers. AI can speed up attacks or amplify the capabilities of 
small numbers of human actors. For example, consider penetration testing that uses 
AI planning. Penetration testing is the white hat counterpart to malicious (black hat) 
attacks; it aims to attack computer systems in order to find vulnerabilities so they can 
be fixed. Researchers have developed in-principle AI planning tools for automating 
the process of planning attacks on individual machines, accounting for uncertainty in 
results of actions and partial observability, then composing these attacks on whole 
networks.268 These tools can strategically plan when to leverage known exploits 
against software on machines, and when to scan to reveal further configuration 
information.xxiii Unfortunately, such technologies could also benefit attackers and 
perhaps expand the scale and speed of attacks.

Privacy attacks driven by machine learning accuracy
Statistical machine learning underlies technologies with beneficial applications such as 
data linkage and facial recognition. Accuracy and scalability improve as the underlying 
AI progresses, and datasets and computing power availability grow. When leveraged 
indiscriminately, however, these machine learning applications can lead to significant 
invasion of privacy.

Privacy attacks are often driven by new machine learning applications. For example, 
stylometric attacksxxiv can re-identify online writing from among hundreds of thousands 
of potential authors:269 train a massively-multiclass classifier with one class per author, 
on samples of known writing; an authoritarian government could then determine the 
authors of dissident online writing by applying this classifier to new writing samples. 
Such attacks leverage unique fingerprints of writing style over content, such as the use 
of punctuation, sentence structure, and word length. As such, they transfer from public 
writing to content written anonymously, even on distinct subjects.

xxiii Using partially-observable Markov decision processes (POMDPs).
xxiv Stylometry is the statistical analysis of the writing style of authors. Stylometric attacks attempt to identify 
authors based on their writing style.



118

GANs and ‘deepfakes’
Generative adversarial networks (GANs) are a recent unsupervised learning 
approach. GANs comprise a pair of neural networks competing with one another: 
a generative network that fits a supplied unlabelled dataset and produces fake 
instances (like creating colour pictures from black and white ones) with the goal 
of fooling the discriminative network, which aims to correctly distinguish real from 
fake.270 For example, a generator may be called upon to create an image of a cat, 
and the discriminator network will critique the generated image against an image set 
comprised of images of actual cats. The models interact until a threshold of acceptable 
accuracy is obtained – the discriminator decrees that the generated cat picture is 
sufficiently similar to an actual cat picture. GANs can be used to produce ‘deepfakes’ 
– synthesised videos of subjects speaking or performing an act that never actually 
happened, such as a fake video of a world leader delivering a speech, or a faked voice 
call from someone you know. Deepfakes, although in their infancy, can be viewed as 
attempts to attack public and journalistic integrity.

Recommendations
Having newfound knowledge of the many ways in which learning systems can 
be susceptible to attack, a corporate decision maker or government policy maker 
exploring deployment of AI systems might feel cautious. These non-exhaustive 
recommendations are designed to encourage thoughtful application of AI in practice.

1. Identify relevant threat models: in the face of unintended consequences of 
deploying AI systems in high-stakes decision making, or systems built upon 
privacy-sensitive data, it is imperative that possible threat models – hypothetical 
attackers with identified capabilities and goals – are not ignored. As a first step, 
practitioners should identify how an adversary might be incentivised to attack 
their system, what capabilities and goals they might possess, and which parties 
(such as providers of computing resources or recipients of shared data) can be 
fully or partially trusted.

2. Evaluate systems against adversaries: with possible threat models in hand, it is 
important to not only validate an AI system against its training data or test data 
held-out from the same data source, but to validate against new data sources, 
and against active adversaries. In the context of confidentiality, practitioners 
should attempt to re-identify, reconstruct or otherwise breach privacy of data 
given access to derived record-level data, statistics or model under proposal for 
release. In integrity or availability attacks, it is important to construct adversarial 
examples or poison training sets, to assess how a model that otherwise performs 
well, could be manipulated to do harm. In high-stakes or high-value settings, it 
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must not be assumed that attackers cannot exist, that attacks are too hard to be 
practical (without first attempting them), or that they cannot be effective.

3. Assess risk relative to attack efficacy: risk assessment of systems involving 
AI must be data driven, and should incorporate any findings from threat model 
identification and adversarial validation. For instance, when attempting to re-
identify data, risk assessment should not classify privacy harms as minimal by 
assuming an attacker would only possess easily available public data – even 
if there are currently no identifiable parties that possess linkable data and an 
incentive to link. It is important that risk assessment be aligned with conservative 
threat models and validations. Moreover, any data security breach cost must not 
be externalised, but linked to social license, reputational and monetary risk.

4. Identify unintended consequences: even in the case where no attacks are 
identified as threatening to an AI system being deployed, it is critical to consider 
unintended negative consequences to individuals. In many cases, learning 
systems can be dual-use technologies with valuable legitimate applications, and 
uses that do harm.

5. Adopt defensive technology: adversarial machine learning is a fast-moving, 
active area of research. Practitioners with identified threat models of concern 
should employ available defensive technology wherever possible, such as 
adversarial training for integrity/availability attacks, and differential privacy in the 
case of data or model releases from privacy-sensitive data.
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REGULATING AI

Margaret Jackson

Artificial intelligence (AI) is already being used in many different sectors and industries 
globally. At this stage, the AI in use or being proposed is ‘narrow’ AI and not ‘general’ 
AI, which means that it has been designed for a specific purpose – say, to advise 
on sentencing levels or to select potential candidates for interview – rather than 
being designed to learn and do new things, like a human. This does not mean that 
narrow AI – generally non-conscious systems – may not be able to replicate human 
consciousness in recognising patterns.271 Identifying patterns in large amounts of data  
is where AI excels.

While some of the development and deployment of AI systems is happening at a 
state or national level, there are concerns being expressed that AI development and 
ownership will be dominated by large global companies like Google, Facebook, Apple, 
Microsoft and Amazon.272 Paul Nemitz cites four ‘bases of digital power’ to watch – 
lots of money, control of ‘infrastructure of public discourse’, collection of personal 
data and profiling, and the algorithms in a ‘black box not open to public scrutiny’.273 
Each of these bases of power are possessed by the global companies who are 
investing considerably in AI development. What this means is, unless the international 
community is proactive in working together to create an acceptable and consistent 
framework of AI regulation, which can be adapted by individual nations, there is a risk 
that commercial interests will set the AI agenda and regulatory responses will  
be largely reactive.

This chapter explores how AI is being or could be regulated. It examines which existing 
regulations can apply to AI, which will need to be amended, and which areas might 
need new regulation to be introduced. Both national and international regulation will be 
discussed, but Australia is the main focus here. This chapter also examines the role of 
ethical codes and standards in handling AI challenges and discusses whether there is 
an appropriate regulatory and ethical framework for dealing with AI, one which will be 
able to handle future developments in AI technology.
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What current regulation applies?
Laws are remarkably flexible and can often apply to new technology without the need 
for significant amendment. When computer technology was first introduced, only a few 
amendments to criminal legislation were required, to ensure that stealing information 
from a computer was theft of property, deceiving a machine like an ATM into giving you 
money was fraud, and changing data stored on a computer was forgery. The notion of 
computer trespass was criminalised through offences such as unauthorised access to a 
machine or destroying data without authority (with intent to commit a crime). Eventually, 
specific ‘cybercrime’ legislation needed to be introduced to deal with growing 
concerns about hacking and denial of service activities.274

Some laws introduced since the advent of computer technology are designed to 
be technology neutral, such as the Privacy Act 1988 (Cth) (the Privacy Act) and the 
Privacy and Data Protection Act 2014 (Vic), so that developments in new technology 
do not require new legislation. Many laws, such as the Competition and Consumer 
Act 2010 (Cth), which contains the Australian Consumer Law (ACL), focus on the injury 
or loss suffered by the consumer due to actions of the seller, rather than on the type 
of technology sold by the seller which may have led to that injury. Manufacturers 
bear the responsibility for loss or damage. The users of computer systems such as 
banks, transport companies, airlines, hospitals, and so on, bear the risks for damage 
caused to their customers. They in turn may seek redress from suppliers of the 
product. This should not change if AI is involved in providing the service, or is part 
of the goods or products being sold, although there may be difficulty with integrated 
products in identifying which part of the supply chain – the designers, developers, or 
manufacturers of the different components – was the cause of the problem. The main 
approach to handling AI issues is to use current regulation as far as possible. A number 
of different areas using AI are discussed below.

Drones and driverless cars
Computer technology has been used for years in the automotive and aeronautics 
industries to provide assistance to drivers and pilots to improve safety. AI technology 
is enabling developers to replace humans either completely or partially in operating 
drones, and driverless and self-driving cars. 

In the first instance, governments are dealing with both drones and driverless cars 
through amendments to existing legislation. With drones, in Australia, Part 101 of the 
Civil Aviation Safety Regulations 1998, which specifically regulates unmanned aircrafts, 
was amended in 2016 to introduce new rules about licensing, necessary permissions 
and notifications. In 2018, the Commonwealth government released a Report on 
Regulatory Requirements that Impact on the Safe Use of Remotely Piloted Aircraft 
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Systems, Unmanned Aerial Systems and Associated Systems, which reviewed the 
success of the new amendments and recommended new processes for dealing with 
risks.275 In 2019, Project US 18/09 Remotely Piloted Aircraft (RPA), a scheme which 
is working on RPA registration and remotely piloted aircraft systems (RPAS) operator 
accreditation, commenced.276 While the work around dealing with the growth of RPAS 
is being done primarily at Commonwealth level, it should be noted that it fits within 
the context of the international framework for civil aviation, the United Nations (UN) 
International Civil Aviation Organization.

A similar approach to using existing legislation is being taken with autonomous 
(driverless) cars and self-driving cars (in which a human driver is still in the car). Unlike 
autonomous drones, though, the regulatory approach to autonomous vehicles involves 
both Commonwealth and state governments. The National Transport Commission 
(NTC), which is funded by the Commonwealth, state and territory governments, has 
released guidelines for trialling autonomous vehicles, as well as discussion papers 
exploring issues around their use. These issues include options for amending existing 
legislation to cover autonomous vehicles, including trains, and approaches to providing 
appropriate motor accident injury insurance.277

Again, the discussion around how to handle the issues caused by autonomous vehicles 
is informed by similar investigations being undertaken globally, particularly in the 
United Kingdom (UK), the United States (US) and the European Union (EU). By 2017, six 
US states had introduced legislation dealing with autonomous vehicles and 19 others 
had similar bills under consideration.278 Germany in particular has developed ethical 
guidelines for Automated and connected driving.279 In the UK, the Centre for Connected 
and Driverless Cars has released a new Code of Practice on automated vehicle 
trialling.280 There are also international groups such as the UN Global Forum for Road 
Traffic Safety, of which Australia is a member, who are examining rules for autonomous 
vehicles.281

Consumer protection
The ACL, nationwide legislation covering sale of goods to consumers, will apply to 
many aspects of AI systems involved in such sales. The ACL applies to goods like 
computer software that are provided to a consumer, either directly or embedded 
in a product provided to them. The consumer guarantees in the ACL include the 
requirement that goods are fit for purpose, and that they are of acceptable quality, 
which includes a requirement that the goods be reasonably ‘safe’.282 Customers 
who are injured or who suffer property damage as a result of unsafe goods can be 
compensated by manufacturers without having to prove that the manufacturer was 
negligent. However, at present, the ACL does offer the manufacturer some statutory 
defences, including that there was no defect in the goods when they were supplied, 
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that the state of scientific and technical knowledge at the time of supply did not enable 
the supplier or the manufacturer to discover the defect, or a cause independent 
of human control occurred after the goods left the manufacturer’s control.283 If 
manufacturers or designers claim that the pre-release testing of the AI system showed 
it worked as expected, but that the problem that led to injury or damage to a consumer 
developed after release in a way that was not expected, then the manufacturer might 
be able to avail themselves of the defences provided by the ACL. Whether these 
defences are appropriate for AI systems is discussed further below.

Many countries are reviewing whether existing product liability laws will apply to AI 
devices. The European Commission, for instance, produced a paper titled Liability 
for emerging digital technologies in April 2018, which examined whether the Product 
Liability Directive and the Machinery Directive adequately covered issues with AI.284 
Both of these directives provide for strict liability in the event of loss or damage. 
Generally, the paper decided that the Directives were adequate for the current state 
of development in technology but that further examination was needed, in particular 
around defectiveness, burden of proof, and management of risk.285 Product liability 
legislation also covers ‘goods’, ‘products’ and ‘manufacturers’, and whether self-
conscious AI in particular may require different terminology. This issue is discussed 
further below.

Government AI decisions
The discussion above has been focused on consumer protection issues, but most of 
the legal cases that have arisen to date involving AI have not arisen in the consumer 
context. They have primarily involved the use of AI by government departments. In 
Australia, there are already a number of instances where human decision makers 
have delegated decision making to computers. For example, the Migration Act 1958 
(Cth) states that the Minister may “arrange for the use, under the Minister’s control, of 
computer programs for any purposes for which the Minister may, or must … make a 
decision; or exercise any power…”.286 There are another 22 sections in a range of acts 
that allow government departments to deem a decision by a computer system to be a 
decision made by a designated officer, for instance, the Therapeutic Goods Act 1989 
(Cth) and the Social Security (Administration) Act 1999 (Cth).287

Decisions made by Australian Government Ministers, departments and agencies can 
be reviewed by the Administrative Appeals Tribunal if allowed for under the relevant 
Commonwealth legislation. Similar state and territory bodies, such as the Victorian 
Civil and Administrative Tribunal, fulfil similar roles. The Commonwealth Human Rights 
Commission and its state and territory counterparts can also investigate complaints 
alleging discriminatory actions by government departments in some cases. Complaints 
against public sector decisions can also be lodged with the relevant Ombudsman, 
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as occurred with the 2016 Centrelink project, ‘Robodebt’. Robodebt was designed to 
check for overpayment of social services by matching Centrelink data with Australian 
Taxation Office data, which resulted in 20,000 people being falsely accused of fraud. 
The Commonwealth Ombudsman investigated numerous complaints and has now 
issued two reports containing recommendations for improvements to be implemented 
by the Departments of Human Services and Social Services, noting that the design of 
the system suffered from limitation purpose, and risk management and overall planning 
were held to be poor.288

Courts provide further avenues for appeal. Two appeals have been lodged with the 
Federal Court against penalty assessments raised by Robodebt.289

Anti-competitive behaviour
The ACL makes it an offence for a person to deceive or mislead a consumer or a 
business.290 A similar section in the Competition and Consumer Act 2010 (Cth) (CCA) 
applies to the conduct of companies in trade and commerce.291 No intent is needed 
to be shown in a case of misleading behaviour. It is arguable that the actions of an AI 
could fall under these sections. AI can fabricate and manipulate data, either because of 
its programming or because of the data it has been fed or has collected.

AI may also be involved in anti-competitive behaviour, particularly for monitoring 
pricing of competitors and making price decisions. In 2015, the US Department of 
Justice prosecuted a seller in the Amazon marketplace for collusion with other sellers 
to fix the price of posters sold online, by sharing and jointly implementing dynamic 
pricing algorithms.292 While no similar cases have occurred in Australia, the Australian 
Competition and Consumer Commission (ACCC) Chair, Rod Sims, in an address 
titled The ACCC’s approach to colluding robots, stated that he considered the anti-
competitive provisions of the CCA able to handle cases involving price algorithms 
and collusion.293 Mr Sims referred in particular to two new provisions in the CCA. One 
of these provisions – the ‘concerted practices’ provision, provides that a corporation 
may not “…engage with one or more persons in a concerted practice that has the 
purpose, or has or is likely to have the effect, of substantially lessening competition”.294 
The ACCC Guidelines on the new provision describe a concerted practice as one 
“where competitors substitute cooperation with each other for the uncertainties of 
competition”.295 The other provision to which Mr Sims referred prohibits a firm with a 
substantial degree of market power from engaging in conduct that has the purpose, 
effect or likely effect of substantially lessening competition in a market.296 Mr Sims 
believes these two new sections would give the ACCC the appropriate powers to 
address collusion by AI systems.
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Privacy protection and big data
The next area of existing law to be discussed is that of privacy protection and big data. 
Data is the key driver of AI systems and, in Australia, the Privacy Act and relevant state 
and territory privacy legislation apply to the collection, use and disclosure of personal 
information. Some also cover privacy breaches and information security. The fact that 
personal information is collected and used by AI does not affect the operation of the 
acts, designed to be technology neutral. 

However, privacy legislation in Australia and overseas has struggled a little to cope 
with the advent of ‘big data’, that is, the enormous amounts of data collected by 
organisations and governments, much of it generated by individuals online. Many of 
the difficulties with big data have arisen because the organisations using it are not 
necessarily the same organisations that collected it, so that informed consent, an 
important requirement in privacy law, becomes difficult if not impossible to obtain, 
where personal information is involved. For example, where the personal information in 
big data sets has been collected via social media or other websites, CCTV and similar 
surveillance technology, or online cookies, any consent, let alone informed consent, is 
not possible depending on the processes used to collect the personal information.

Organisations and governments have often struggled to process big data due to 
its size and complexity. AI, however, has the capacity to analyse big data and is 
able to recognise patterns in data which could lead to identifying individuals from 
the data analysed. The UK Information Commissioner’s Office and the Office of the 
Australian Information Commissioner have released guides to assist organisations and 
governments with big data analytics.297 These guides focus on embedding ‘privacy-by-
design’ into the early stage of AI development, rather than ‘unpredictability by design’ 
which can result if data is fed into algorithms without pre-defined queries.298 The 
guides restate the importance of privacy impact assessments at the beginning of AI 
projects, for transparency about processing and for minimisation in data collection.

There have been some amendments to privacy laws internationally to strengthen them 
in light of the ongoing growth in the collection of vast amounts of personal data. The 
EU General Data Protection Regulation 2016 (GDPR) is designed to be technology 
neutral as well, and so applies to new technology such as AI. It focuses on informed 
consent, more protections around the collection of sensitive data, breach notification 
and two new rights for individuals – the right to be forgotten and the right to data 
portability – although these two new rights became gradually weaker as the lengthy 
negotiations over the new GDPR took place. The GDPR can now impose heavy 
penalties on organisations and governments that breach its provisions. However, 
doubts have been raised about the applicability of the new GDPR to AI technology 
with its associated issues such as a lack of transparency about decision-making and 
difficulties in obtaining consent.299



127

The Commonwealth Government has announced its intention to strengthen the Privacy 
Act by increasing penalties for serious and repeated interference with an individual’s 
privacy. It intends to introduce a right for individuals to ask technology and social media 
companies to cease using and disclosing their personal information, and a new code of 
conduct for social media and online platforms covering collection and use of personal 
information.300 These amendments will address some of the issues relating to big data 
and social media, but do not appear to address specific AI-related issues, such as how 
to ensure that the human rights of individuals whose data is being collected and used 
by AI is protected if obtaining consent from the individuals becomes impracticable.

Proposals for new specific AI regulation, 
particularly related to general AI
So are AI systems different from other software, resulting in a need for specific 
legislation to deal with safety and security issues that might arise? Three stages have 
been proposed as possible areas that need addressing – specification, robustness, 
and assurance301

Stage one – specification – covers the design of the AI system. Was the design 
appropriate for the purpose it was intended to fulfil? While the initial stage of AI 
design, deciding the purpose of it, is not particularly different from designing any 
computer system, the architectural design of AI software often involves the selection of 
appropriate data, and tuning and training of a neural network, rather than coding in a 
programming language. How the algorithm then develops may be in ways not intended 
or expected from the original intent. This leads to the second stage.

Robustness, the second stage proposed, is also expected of the design and 
implementation of any computer system. Has the designer built into the system 
appropriate ways to deal with risk, to incorporate margins of acceptable 
unpredictability, and adequate failsafe mechanisms? The main challenge with AI 
systems, particularly those intended to be dynamic, is understanding how and why the 
AI acted as it did, and if its actions or decisions were anticipated.

The third stage – assurance – covers monitoring the performance of the system and 
enforcing the controls and safeguards built into the system, including interrupting the 
system and closing it down. Again, this would be expected in any computer system 
design. With AI, while the design objective might be appropriate, the data as accurate 
as possible and the neural network fully trained, the results may not be what was 
expected or intended, able to be explained, or even foreseen.
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Explainability and foreseeability
The questions of ‘explainability’ and ‘foreseeability’ of actions by AI systems are two 
key issues to be considered. Machine learning AI systems, for instance, are a result 
of the provision of data, training and tuning in how to analyse the data, resulting in 
an algorithm which is then used, say, to predict prices. The algorithm may change as 
new or different data is received. From this starting point, the system develops its own 
conclusions regarding analysis of the data. Despite testing, it is not always possible to 
foresee if the AI algorithm will operate as expected. For example, in 2016, Microsoft 
developed an AI system called Tay to engage and chat with people. It appeared on 
Twitter, but after 16 hours online Tay was making racist and inflammatory statements as 
a result of online interaction with other tweeters.302

As noted earlier, risks relating to injury or damage are borne by the owners or 
implementers of an AI system. They in turn may seek redress from suppliers of the 
product. A statutory defence in the ACL is available to manufacturers, who may claim 
that the product, the AI, worked as designed when tested before release, and that it 
was beyond the control of the manufacturer to foresee all it might do when in operation. 
There has been a change from what is developed to how it evolves. At this stage, it 
is possible for the manufacturer to claim that they have shown ‘reasonable care’ in 
designing an AI system. But is ‘reasonable care’ or avoidance of foreseeable harm in 
designing an autonomous AI an adequate standard? Is a different test required and 
should a specific liability regime be established for AI? Is an AI system a ‘product’ at all?

The difficulty in understanding how algorithms operate has been described as the 
‘black box’ problem.303 The ‘black box problem’ is a response by some AI developers 
to questions of why they cannot explain how the AI operates and why it did what it did. 
This issue of explainability is also relevant when considering ways in which consent for 
the use of personal information can be obtained from individuals; if the developers and 
users of AI cannot understand how it works, it is almost impossible for an individual to 
consent to it, as it cannot be understood.304

Another argument against explainability is that algorithms are commercial in 
confidence and cannot be disclosed to others.305 In Cordover and Australian Electoral 
Commission,306 the Administrative Appeals Tribunal upheld the Australian Electoral 
Commission’s (AEC) refusal to release code of a computer program that it used to read 
and count Senate ballot papers, as it claimed that the code was a ‘trade secret’, used 
for the AEC’s fee-for-service function.307

The argument that AI actions might not be foreseeable, understandable or accessible 
has led to calls for transparency around algorithms. Both the US Congress and Senate 
introduced a Federal Algorithmic Accountability Act in April 2019. Applying only to 
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companies earning over $USD 50 million per year, the Act would make the Federal 
Trade Commission responsible for evaluating automated systems that had been 
classified as ‘highly sensitive’. In addition, companies would be required to evaluate 
algorithms for a range of issues such as bias, discrimination, and or security and privacy 
risks. While the US Senate seems unlikely to approve the Bill for political reasons at this 
time, the issue will remain on the national agenda, particularly as some US states are 
trying to respond to citizen concerns.

New York City Council passed an algorithm transparency law in 2017 (Local Law 
49) which mandated that a task force be established to study the use of algorithms 
by New York agencies and to develop recommendations about how “information 
on agency automated decision systems may be shared with the public” and how 
agencies can address any harm caused. Progress to date by the Task Force has been 
slow.308 Washington State has also drafted algorithmic accountability bills, which if 
passed, would require algorithms to be made available by vendors of AI systems for 
government agency or third-party testing, auditing or research.309

Bias
As noted above, issues associated with a lack of transparency lead to concerns about 
bias and discrimination by AI systems. Bias can arise in two ways with AI. The first is 
when bias, conscious or unconscious, is incorporated into the design of the AI system 
and the algorithm that it will use. The second is when the data that is provided to the 
AI contains biases. Amazon provides an example of the importance of ensuring that 
the data provided to an AI is not biased. Amazon had developed an AI recruitment tool 
but found that it was biased against women and was more inclined to select males 
rather than female applicants. The AI system had been provided with the resumes of 
successful applicants over the previous ten-year period, but this data reflected the 
dominance of males working in information technology. The AI is no longer used.310

AI systems are being used widely in employment recruitment, in setting penalties in 
lower courts, in checking for fraud in government payments, for facial recognition 
in areas such as education and policing, and in legal advice work. The private 
sector offers more challenges than the public sector as there are limited avenues to 
complaints processes. In recruitment situations, appeals by non-employers against 
decisions made to interview or appoint applicants are generally not available. In some 
cases, anti-discrimination laws (such as the Age Discrimination Act 2014 (Cth) and the 
Sex Discrimination Act (2004) (Cth) and state and territory equivalents) might be used.

The UK’s Centre for Data Ethics and Innovation (CDEI), created by the UK Government 
to advise on AI, has announced that one of its first activities will be to undertake 
reviews into bias in a number of sectors, starting with the finance sector, and moving 
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onto local government, recruitment, and crime and justice over the next two years.311 
The use of AI for decision-making in all these areas has the potential to adversely 
affect individuals if bias is embedded in the algorithms being used.

One regulatory solution to concerns about bias with AI decision making that has been 
proposed is that there should be human involvement in decisions by AI which affect 
human rights. The EU GDPR provides a right to individuals “not to be subject to a 
decision based solely on processing”,312 so that some human contribution to the decision 
making is needed. However, this right, which was originally described as a ‘right to 
explanation’, was watered down after lengthy compromises, and its operation now is 
fairly restricted. For example, it does not apply if the individual gives explicit consent. 
It also does not apply if the decision is necessary for entering into a contract, say, for 
employment.313 However, Australia’s Privacy Act does not include any similar right.

Electronic personality
There have been suggestions made that a solution to the problem of foreseeability 
and lack of transparency is to recognise some form of ‘electronic personality’ for AI 
and robots. These suggestions are an attempt to address the related issues of liability, 
rather than an attempt to grant legal human status to AI systems. For instance, while 
Estonia is considering granting legal status to robots,314 or ‘kratts’,xxv it has done so in 
the context of allocating liability for damages, having rejected introducing sector-based 
liability regulation and “opting for algorithmic liability instead”.315 A draft bill is being 
prepared for discussion. 

Similarly, the European Parliament approved a Resolution of 16 February 2017 with 
recommendations to the Commission on Civil Law Rules on Robotics.316 Article 59(f) of 
that Resolution states that the EU should consider:

creating a specific legal status for robots in the long run, so that at least the 
most sophisticated autonomous robots could be established as having the 
status of electronic persons responsible for making good any damage they may 
cause, and possibly applying electronic personality to cases where robots make 
autonomous decisions or otherwise interact with third parties independently

With this approach, it is envisaged that awarding some form of legal status to AI 
systems would enable a specific compensation scheme for loss and damage caused 
by the AI to be established for that AI, separating it from the company that developed 
or initiated it. There is no doubt that, as AI technology develops, there will be a 
need for new forms of accountability and liability for business and consumer related 

xxv ‘Kratts’ are part of Estonia folklore and are servants built from hay or old household items.
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damages and injuries resulting from AI activity, but whether it takes the form of legal 
personhood will require much more debate.

Strict liability
Another suggestion has been to introduce strict liability (no fault) laws.317 Unlike the 
European Union, the product liability laws in Australia have limited strict liability. Often, 
a remedy for damages is sought under tort law. It will apply if a person suffers injury 
or loss as a result of the negligent actions of another. For negligence to be proven, 
the injured person has to show that the other party owed them a duty of care, that 
they failed in that duty, that the risk of harm was reasonably foreseeable, and that the 
injury was caused by the failure of the person. However, it is only in cases where the 
activities that led to injury of a person could be called ‘ultra-hazardous’ activities – such 
as those involving fire, hazardous materials and so on – that the injured person does 
not have to prove negligence.318

If strict liability is extended to cover all AI activities, then it may be that insurance cover 
will be needed, creating compensation pools funded by developers and implementers 
of AI. Examples of similar compensation pools are the Victorian Motor Car Traders 
Guarantee Fund, established by act, funded by motor car trader licence fees, and 
intended to compensate individuals who suffer loss due to actions of car sellers,319 or 
the various worker’s compensation insurance schemes in Australia which are funded 
by employers to cover employees work injuries.320

Intellectual property
Apart from issues around liability for loss and damage, and bias, there arise questions 
around intellectual property (IP). New IP might be created once an AI system is 
operational. For instance, the developer of the AI system may provide the technical 
expertise, while the user of the system may provide the data without which the AI 
cannot operate. New IP may then be created. In Australia, copyright exists in works 
resulting from human intellectual effort, not from computer generated works.321 Some 
countries, like the UK and New Zealand, have amended their copyright law to grant 
ownership of computer generated works for copyright purposes to the person who 
made the arrangements for the work to be undertaken.322

Ethical guideline proposals
There is no shortage of ethical guidelines for AI being proposed, some by specific 
professional and industry groups,323 others by individual countries,324 the EU,325 and the 
large global technology companies.326 It is clear that there is national and international 
agreement that such guidelines will be vital for the protection of human rights, 
including protection against discrimination and bias.
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In Australia, Data61, a division of the Commonwealth Scientific and Industrial Research 
Organisation (CSIRO), released a discussion paper in 2019 titled Artificial Intelligence: 
Australia’s Ethics Framework, which summarises relevant legislation and ethical 
principles relating to AI, both Australian and overseas. It provides a number of case 
studies illustrating issues with possible AI bias in decision-making, automated data 
decisions in government settings, transparency issues and the need for human 
oversight, and predictive systems in health, policing and insurance. The paper 
proposes eight core principles for an ethical AI Framework.327 These principles are:

1. The system must generate net benefits
2. The system will do no harm
3. There will be appropriate regulatory and legal compliance
4. Privacy protection will be ensured
5. The system will be fair
6. There will be transparency and explainability
7. There will be a process to contest decisions
8. The people and organisations responsible for the AI will be identifiable and 

accountable

The final section of the paper briefly discusses possible ways in which the ethical 
framework could be implemented, including through impact assessments, review 
processes, risk assessments, best practice guidelines, education and training 
standards, AI monitoring, and recourse mechanisms.328

The European Commission High-Level Expert Group on Artificial Intelligence (AIHLEG) 
has also released Ethics Guidelines for Trustworthy AI. The AIHLEG guidelines propose 
a human-centric approach, with the key question to be asked: how will this AI help 
humans? Humans will need to be able to trust the AI. To achieve ‘trustworthy’ AI, three 
components must be satisfied throughout an AI system’s entire life cycle. First, the AI 
system must be lawful, complying with all applicable laws and regulations; second, 
it should be ethical, adhering to ethical principles and values; and, third, it must be 
robust from a technical and social perspective.329 The guidelines are intended to be 
voluntary and to provide a broad and general horizontal framework, which should be 
supplemented by sectorial approaches, say, in areas such as medical health.

In the AIHLEG guidelines for trustworthy AI, the framework to be implemented 
envisages three stages – first, establishment of four ethical principles; second, 
implementation of seven key requirements; and third, the assessment of trustworthy AI 
through operationalising the key requirements. The four ethical principles are based on 
fundamental human rights, many of which are contained in existing legal requirements. 
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These principles are:330

1. Respect for human autonomy
2. Prevention of harm
3. Fairness
4. Explicability

The guidelines acknowledge that there may be tensions between these four principles. 
The example they provide of this tension is when AI systems are used for ‘predicative 
policing’, usually involving surveillance activities. While this might prevent harm, it 
may also impinge on individual privacy and liberty, and this tension will need to be 
considered by AI designers and operators.

The seven key requirements are:332

i. Human agency and oversight 
ii. Technical robustness and safety
iii. Privacy and data governance
iv. Transparency
v. Diversity, non-discrimination and fairness
vi. Societal and environmental wellbeing
vii. Accountability

These requirements are all of equal importance and are interrelated. They apply 
equally to all stakeholders involved with AI, including developers, deployers and end-
users.333 Again, tensions may arise between the requirements, but how these tensions 
are dealt with must be rationally considered, and the solutions acknowledged and 
evaluated, with accountability clearly stated.334

The guidelines also address technical and non-technical methods to be used in 
realising trustworthy AI. Technical methods include ensuring ethics and the rule of law 
are incorporated into design from the beginning, mechanisms for fail-safe shutdowns, 
and appropriate testing and validation.335 Non-technical methods include regulation, 
codes of conduct, standardisation, certification, accountability through governance 
systems, and the use of diversity and inclusive design teams.336

The final section of the AIHLEG guidelines discusses processes for assessing 
trustworthy AI. It contains a six-page assessment list which is to be piloted with 
stakeholders from the public and private sectors throughout 2019, with a revised 
version due in early 2020.337
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Other ethical guidelines contain similar principles, a number of which have been based 
on the AIHLEG guidelines, such as The European Group on Ethics in Science & New 
Technologies Statement on AI.338 The AI 4People’s Ethical Framework for a Good AI 
Society project has five principles derived from a survey of 37 different sets of ethical 
principles, including those in the AIHLEG guidelines.339 The International Conference 
of Data Protection and Privacy Commissioners also released the Declaration on Ethics 
and Protection in Artificial Intelligence in 2018.340 

The OECD Council on Artificial Intelligence approved the Recommendation on Artificial 
Intelligence in 2019.341 In Section 2 of the Recommendation, the Council recommends 
that member countries should implement the suggested national policies and engage 
in international co-operation using the following five principles contained in Section 1:

1. Inclusive growth, sustainable development and wellbeing
2. Human-centred values and fairness
3. Transparency and explainability
4. Robustness, security and safety
5. Accountability

All of the ethical guidelines developed or being developed are intended to be voluntary 
non-binding guidelines. Some are aimed at professional groups; others are documents 
intended for national or international impact. Human rights and data privacy are key 
rights in all of the ethical guidelines, as is the need for transparency (or explicability).

Criticisms of these approaches at industry and national levels centre around the 
weaknesses of self-regulation, while those of international level raise concerns about 
the effectiveness of ‘soft law’ approaches to international issues. However, there are a 
number of examples of internationally agreed guidelines which have achieved global 
impact, and which have resulted in legislative adoption by numerous nations. One such 
example is the 1980 OECD Guidelines on the Protection of Privacy and Transborder 
Flows of Personal Data, which was incorporated into the Privacy Act and influenced 
many other data protection laws around the world.

Another example of a set of international guidelines that eventually led to widespread 
adoption is that of research ethics. Starting with the 1947 Nuremberg Code for research 
on human subjects, formulated by the American judges sitting on the Nuremberg 
Tribunal – and leading to the 1964 Declaration of Helsinki developed by the World 
Medical Association to govern medical research – ethical principles governing the 
conduct of medical, biomedical and social science research involving human subjects 
apply to research activities in most countries. The international acceptance and 
adoption of research ethics involving human subjects has been a longer and more 
tortuous journey than that of data protection – and is still continuing – but it does 
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illustrate the need for initial international expression of what is acceptable.
In areas of important social and economic change that will have a global impact, such 
as what is occurring with AI systems and technology, ethical frameworks offer a way 
to introduce agreed principles that support the introduction and implementation of 
the technological change, whilst at the same time setting acceptable standards to 
lessen any negative impact on humans. The frameworks that have been proposed by 
the various international bodies and organisations are necessary to provide a readily 
understood context for individuals to accept that there are constraints within which 
AI development and implementation will occur. At this stage, there are numerous AI 
ethical frameworks being proposed. Fortunately, there is considerable overlap in the 
principles comprising each framework.

The next stage in development of an AI ethical framework is international agreement 
on one set of principles.

Introducing a layered approach for regulation
It is evident that there is not one solution to regulation of AI, as there is already a mix 
of state and national legislative approaches, plus a myriad of ethical principles at all 
levels. The Data61 discussion paper on an ethics framework for AI notes that an ethics 
framework alone is not enough to deal with the issues of AI; it should be “one part of a 
suite of governance mechanisms and policy tools which can include laws, regulations, 
standards and codes of conduct”.342

The various approaches – or layers – that are necessary to regulate AI are discussed 
below.

Level one
The first level of regulation will be voluntary and should take the form of internationally 
agreed ethical guidelines. As mentioned above, there are already a lot of international, 
national and industry ethical frameworks being suggested and there is considerable 
overlap in the content of the various guidelines. The majority call for transparency, 
accountability, safety, assurance of human rights – particularly relating to personal 
information – and lack of discrimination. While it is important that there is consensus 
about what the key ethical principles to govern the design, development and use of AI 
are, this does not mean that guidelines must be exactly the same. Overall acceptance 
of the key principles should suffice at this early stage of AI use and development.
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Level two
The second level of the approach to regulation will also result in non-binding 
developments. There must be internationally agreed technical standards for human-
centric design of AI, which can then be adopted by nations. The Institute of Electrical 
and Electronics Engineers (IEEE) is developing AI related standards. Eleven areas 
have been identified, including one on data privacy and another on transparency 
of AI systems.343 The International Organization of Standardization (ISO) has also 
commenced similar work, with three published ISO standards and 11 ISO standards 
under development.344 Whilst its standards are voluntary, ISO standards are usually 
considered by courts to be best practice. Standards Australia is involved with some of 
these developments.

Level three
The third level is national or state legislation that ensures there is adequate consumer 
protection, product security and data protection legislation. These laws will need to 
address what can be delegated to an AI system and what cannot. Many countries 
have started to review existing legislation in these areas to either ensure that existing 
legislation will apply, or otherwise that new amendments might be needed in some 
areas. The EU has been a leader in such a process.

Level four
The fourth level will be for specific areas in which AI is to be used – such as automated 
vehicles, drones and smart services – to have appropriate legislation, whether through 
amendment of current legislation or through enactment of new legislation.

Level five
The fifth level is to provide some form of national governance oversight to ensure 
there is accountability of AI developers and deployers. The Australian Human 
Rights Commission has suggested the establishment of a Responsible Innovation 
Organisation (RIO).345 The RIO would have investigatory powers similar to the ACCC, 
could develop standards, regulation and have powers similar to the Australian 
Information Commissioner around monitoring, compliance and penalties, operate a 
certification scheme for AI systems, and adjudicate complaints.346 It would be common 
sense, though, to incorporate some human involvement in decision making in all cases 
involving AI, such as through the establishment of an AI Ombudsman.

The UK Government is establishing both an industry-led AI Council and advisory body 
called the Centre for Data Ethics & Innovation. The UK’s Information Commissioner is to 
develop a new framework for auditing artificial intelligence tools.347
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Level six
Finally, the sixth layer is the provision of appropriate insurance schemes to assist with 
overall industry risk management, through levies on AI manufacturers, developers and 
deployers of such systems. Insurance companies are involved at present in assessing 
risk in relation to driverless cars in particular, and some governments have already 
acted to ensure there will be no gaps. In the UK, for instance, the Automated and 
Electric Vehicle Act 2018 has been enacted to address a gap in both insurance and 
public liability coverage. This act is not considered to be implemented immediately but 
has been passed in anticipation of the introduction of driverless cars in 2021.348

Conclusion
Regulation of AI has already commenced. Challenges associated with certain types 
of AI currently being tested and introduced, like driverless cars and drones, are being 
addressed through amendments to existing national and state legislation, but with 
input from global forums and working groups.

Further, many nations are reviewing their laws around product liability, and in particular, 
consumer protection, to determine whether any amendments might be needed to 
address AI-related issues. Governments and industry both have key roles to establish 
clear frameworks for developers, deployers and users, and to determine gaps in 
existing regulation.

There is growth in the uses of AI by governments, most appropriately included in 
relevant legislation. The private sector, too, has expanded its use of AI. In many cases, 
this growth has been built on the understanding that there are protections from misuse 
of personal information contained in privacy laws, however, the exceptions and the 
breadth of the rights contained in the extended uses of personal information appear to 
have weakened those protections. This needs to be addressed by regulators.

The lack of transparency about how AI systems operate, and the associated issues 
around foreseeability around AI decisions, are the biggest challenges for regulating 
AI, and these issues are unlikely to be dealt with without the introduction of new 
legislation. General AI involves bigger challenges than those posed by narrow AI, 
particularly as machine consciousness develops, if it does so. There will be increasing 
problems of foreseeability, from what is developed to how it evolves. It will be vital that 
human rights and the rule of law are protected.

The manufacturer might argue that at the time of placing the goods on the market or 
providing the system to the user, no vulnerability with the AI was known; or that they 
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do not control the algorithms they have developed. It is likely that the concept of strict 
liability for damage or loss may need to be extended. Insurance and compensation 
pools may be needed. Control and liability issues will need to be addressed as more 
advanced AI is developed. It will likely not be one single regulatory solution, but rather 
a layered approach to AI regulation that is needed at various levels. Ethical guidelines 
will be an important part of that framework, as will the involvement of human oversight 
in decisions made by AI.

Ethical AI principles and guidelines are being developed at international, national and 
industry levels. While there is considerable overlap in the principles being developed, 
there does need to be international support for universally agreed principles.

What is missing with the AI ethical principles, which occurred with the OECD data 
protection guidelines and research ethics frameworks, is a clear international leader. 
With data protection, the OECD, which now represents 34 members plus 16 adherents, 
took that role. With research ethics, both the United Nations and the World Medical 
Association provided leadership. At this stage, the EU AI ethical principles appear to be 
the most developed and have been incorporated into other proposed frameworks, but 
the approval of the Recommendation on AI by the OECD may see this change.

There are considerable challenges facing Australia and the rest of the global 
community in ensuring that the concepts embedded in the various ethical principles 
– such as transparency, explainability, impact assessments, risk assessment and 
review processes of AI, and avenues for recourse against decisions by AI – are 
operationalised effectively and appropriately. The possible future advent of AI that may 
achieve consciousness lends urgency to these endeavours.

AI developments offer potentially destructive and detrimental impacts on the lives 
of individuals globally. A workable and globally accepted AI regulation and ethical 
framework should be able to restrict the harm to individuals and society without stifling 
development that can benefit the same groups with advances in health and security, 
and ensuring economic security and stability. Regulation does not need to be a barrier 
to development, but it does need to be consistent.
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